July 2022 LIP of the Month

Tectonic evolution, volcanic features and geochemistry of the Paleoproterozoic Salla belt, northern Fennoscandia: From 2.52–2.40 Ga LIP stages to ca. 1.92–1.90 Ga collision

Köykkä a, *, R. Lahtinen b, T. Manninen a

a Geological Survey of Finland, P.O. Box 77, FI-96101 Rovaniemi, Finland

b Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland

* Corresponding author. E-mail address: juha.koykka@gtk.fi (J. Köykkä)

Text and figures extracted and modified from:

Köykkä, J., Lahtinen, R., Manninen, T. 2022. Tectonic evolution, volcanic features and geochemistry of the Paleoproterozoic Salla belt, northern Fennoscandia: From 2.52 to 2.40 Ga LIP stages to ca. 1.92–1.90 Ga collision. Precambrian Research 371, 106597. https://doi.org/10.1016/j.precamres.2022.106597

Introduction

The Fennoscandian Shield is the main component of the Fennoscandia crustal segment that forms the northern part of the (proto) Baltica or the East European Craton (Fig. 1a). It is composed of an Archean core in the NE and progressively younger Proterozoic crustal domains towards the SW. The East European Craton was formed between 2.0 and 1.7 Ga by the successive collision of Fennoscandia, Sarmatia and Volgo–Uralia crustal segments or blocks. The bedrock of northern Finland is mainly composed of 3.5–2.5 Ga Archean basement and 2.5–1.9 Ga Paleoproterozoic supracrustal cover, which mainly form the rim of the Central Lapland granitoid complex and several different Archean basement complexes (Fig. 1b). The main Paleoproterozoic orogenic evolution of Fennoscandia has been divided into the Lapland-Kola (1.94–1.86 Ga) and the composite Svecofennian (1.92–1.79 Ga) orogenies (see Lahtinen et al., 2018).

In the Fennoscandian Shield, 2.52–2.40 Ga LIP-related within-plate volcanic rocks were developed in the Kola and Karelian cratons in several major magmatic pulses and events (Fig. 1b). The main intrusion-related events were at 2.53, 2.50, 2.45, 2.40 Ga and 2.33–2.31 Ga (e.g., Stepanova et al., 2015; Huhma et al., 2018; Bayanova et al., 2019; Davey et al., 2020), which also correlates with the volcanic rocks shield-wide. Probably the best documented Early Paleoproterozoic shield-wide magmatic event took place in several cratons at ca. 2.45/2.44 Ga (Fig. 1c), which produced an LIP with both mafic and silicic intrusions, diabase dykes and coeval volcanic rocks (e.g.  Vuollo and Huhma, 2005; Lauri et al., 2012; Bogina et al., 2018; Bayanova et al., 2019; Ernst et al., 2019). The final 2.40 Ga event in the Fennoscandian Shield mostly included dyke systems in Russian Karelia (Bayanova et al., 2019) and in northeastern Finland (Huhma et al., 2018). In NNE Finland, high-Mg magmas with a wide areal distribution could probably be considered as part of the dyke-related 2.43–2.42 Ga magmatism, which can be found in the Salla belt, NNE Finland (2424 ± 5 Ma, Huhma, et al., 2018).

Traditionally, volcanic and intrusive events in the Fennoscandian Shield can be divided into time intervals following the main Karelian time stratigraphic units and events: the Sumi (2505–2430 Ma), Sariola (2430–2300 Ma), Jatuli (2300–2060 Ma), Ludicovi (2060–1960 Ma) and Kaleva (1960–1900 Ma) systems (Hanski, 2013; Hanski and Melezhik, 2013). This paper focuses on the Sumi–Sariola volcanic systems and intrusive events between 2.52 and 2.40 Ga in the Paleoproterozoic Salla belt and its correlative volcanic units in the Kuusamo belt, in NNE Finland (i.e Salla and Kuusamo group volcanic rocks). This study also compares the Sumi–Sariola volcanic events between NNE Finland, Russian Karelia and the Kola Peninsula and proposes a tectonomagmatic scenario and locations at 2.51–2.40 Ga of Archean crustal blocks in Fennoscandia.


Fig 1. a) Simplified geological map of Fennoscandia. b) Archean crust covered by Proterozoic rocks in Fennoscandia. Black frame = study area. Dotted blue lines outline the least deformed main Archean blocks separated by Paleoproterozoic sutures and major rifts. The dotted red line outlines the CLGC. SB = Salla belt, KB = Kuusamo belt, CLB = Central Lapland belt, A = Akanvaara; B = Burakovka, J = Junttilanniemi, K = Koitelainen, Ke = Kemi, Ko = Koillismaa, M = Matinvaara, Pe = Penikat, T = Tsokkoaivi. c) Matachewan LIP reconstruction modified after Söderlund et al. (2010) and Ciborovski et al. (2015).

Volcanology and geochemistry

A total of 491 selected whole-rock analyses from the Salla and Kuusamo belts, five from the Kainuu belt (Finland) and 93 from Kola–Karelia (Russia) were used to determine and correlate the Sumi–Sariola volcanic systems and characteristics in the Salla belt area (see Table 1; Figs. 2a-d). In the Salla belt, the magmatism included at least two major events, which initiated at ca. 2.45–2.44 Ga and were followed at ca. 2.43–2.40 Ga, extending over an interval of ca. 300–400 Ma. Tectono-magmatic evolution shows enrichment in LILE elements, indicating a continental crustal contamination, in an intracratonic rift related setting, characterized by a well-preserved dynamic and multiphase stratigraphic architecture and volcanic processes with related successions.

In the Salla belt, the Salla group of the Sumi system mainly includes subaerial amygdaloidal intermediate lava flows, and acid lapilli tuffs and welded ash-flow tuffs, whereas the Kuusamo group of the Sariola system includes subaerial–subaqueous intermediate to ultrabasic magmatism that has volcanic structures related to continental flood basalts and/or pahoehoe tube-type lava flows. Both systems indicate, for instance, lava cooling, gas expansion and escape processes, and vapour differentiation processes and overall devolatilization of lava (Figs. 3a-h). Based on the calc-alkaline to tholeiitic affinity, it is possible that Sumi–Sariola volcanism in the Salla belt resulted from the content of the core-related fluids in the plume heads.

Table 1. Selected average and range variation of element ratios from volcanic rocks of the Salla and Kuusamo groups in SB and KB (major elements in %; trace elements in ppm). r. = range, a. = average, Mg# = [Mg/(Mg+Fe2] x 100; AC = acid, IM = intermediate, BA = basic, (U)BA = (ultra)basic; and = andesite, bas = basalt, band = basaltic andesite, dac = dacite, mg-bas = high-Mg basalt, rhy = rhyolite, (b)ta = (basaltic) trachy-andesite.

GeoUnit

RockType

SiO2

TiO2

Al2O3

Fe2O3

MnO

MgO

CaO

Na2O

K2O

P2O5

Cr

Mg#

Salla gp (Sumi)

Petservaara fm

IM (band, and, (b)ta)

r.

51.3-69.7

0.53-1.34

11.3-16.1

7.66-16.45

0.02-0.28

0.95-10.5

0.38-11.4

1.13-6.49

0.07-9.25

0.1-0.39

17-542

21.24-27.92

n=209

a.

58.21

0.88

13.66

10.68

0.16

4.14

5.32

3.87

1.98

0.18

91

24.58

AC (dac, rhy)

r.

60.2-77.1

0.57-1.24

10-14.2

2.52-13.37

0.01-0.21

0.09-5.11

0.17-5.85

0.73-5.8

0.47-6.35

0.12-0.41

13-104

5.3-14.1

n=112

a.

67.15

0.82

12.11

8.29

0.09

1.28

2.65

3.02

3.44

0.23

33

10.98

Kuntivaara fm

IM (band, (b)ta)

r.

53.3-61.7

0.5-1.48

13.6-16.2

6.69-12.2

0.06-5.33

0.16-7.42

0.65-7.26

3.66-5.75

0.3-4.92

0.06-0.36

51-273

1.32-42.53

n=12

a.

56.18

0.74

14.61

8.78

0.99

4.44

3.75

4.58

2.26

0.14

131

29.15

AC (dac, rhy)

r.

63.5-70.9

0.37-1.33

10.9-15.7

2.14-8.64

0.02-1.52

0.03-1.81

0.64-4.3

1.01-5.51

2.68-7.5

0.13-0.28

13-25

1.09-18.11

n=7

a.

67.54

0.87

13.90

4.62

0.56

0.58

1.80

3.54

4.41

0.21

19

8.21

Purkkivaara fm

AC (dac, rhy)

r.

65.31-75.2

0.57-0.96

11.1-12.1

5.61-10.53

0.03-0.14

0.21-2.73

0.29-3.64

3.22-4.97

0.48-3.94

0.06-0.35

18-30

2.36-26.48

n=8

a.

69.46

0.71

11.80

7.66

0.09

0.94

2.21

3.62

2.89

0.18

24

9.19

 

GeoUnit

RockType

SiO2

TiO2

Al2O3

Fe2O3

MnO

MgO

CaO

Na2O

K2O

P2O5

Cr

Mg#

Kuusamo gp (Sariola)

Kuntijärvi fm

BA (mg-bas)

r.

47.5

0.41

9.29

10.56

0.18

15.7

8.08

0.73

0.86

0.06

1725

56.18-56.18

n=1

a.

56.18

IM (band)

r.

49.9-51.6

0.53-0.73

13-15.1

10.19-12.45

0.08-0.23

6.66-9.15

4.64-7.68

0.44-5.06

0.27-1.95

0.09-0.13

258-565

31.57-43.64

n=4

a.

50.95

0.64

14.00

11.52

0.17

7.72

6.16

2.81

0.86

0.10

350

36.64

Mäntyvaara fm

BA (mg-bas)

r.

44.5-51

0.3-0.64

7.15-19.3

9.71-12.4

0.15-0.2

5.49-23.6

3.96-9.74

0.01-4.12

0.01-2.04

0.04-0.14

162-3570

32.77-67.25

n=17

a.

47.31

0.49

10.94

11.04

0.18

15.49

7.04

1.63

0.60

0.08

1843

53.40

IM (band, (b)ta)

r.

48.8-58.3

0.39-0.57

8.42-16.7

6.78-12.76

0.11-0.22

5.57-15.7

4.85-12.4

0.63-5.58

0.06-2.18

0.06-0.11

112-1950

34.51-60.42

n=45

a.

53.90

0.48

12.54

8.97

0.16

9.46

8.51

2.96

0.69

0.09

547

47.10

Esikkovaara fm

(U)BA (mg-bas)

r.

40.3-50.6

0.2-2.54

6.63-12.8

7.35-18.59

0.13-0.25

4.48-21.8

6.35-18.7

0.17-5.6

0.01-2.49

0.05-0.27

107-2750

17.2-62.55

n=22

a.

46.29

0.66

8.86

12.07

0.18

15.41

8.41

1.88

0.48

0.09

1709

51.00

IM (band, (b)ta)

r.

50.54-59.8

0.35-1.68

8.14-14.7

6.68-12.63

0.08-0.28

2.76-12.3

5.09-12.9

3-6.16

0.1-1.96

0.1-0.49

24-1160

17.13-50.81

n=28

a.

54.84

0.83

11.96

10.35

0.14

7.37

7.81

4.07

0.94

0.15

442

37.53

Matsokkaselkä fm

BA (mg-bas)

r.

45.2-47.7

0.31-0.54

6.47-10.7

10.24-10.85

0.16-0.18

14-21.7

7.79-8.27

0.76-1.46

0.02-0.69

0.05-0.09

1240-2690

53.7-63.29

n=45

a.

46.53

0.46

8.96

10.52

0.17

17.13

8.03

1.04

0.36

0.08

1940

58.03

IM (band)

r.

51-56.7

0.58-0.87

9.79-14.8

8.27-10.88

0.13-0.18

4.84-9.78

7.32-10.1

2.25-4.87

0.05-1.45

0.1-0.15

80-790

29.22-45.27

n=19

a.

53.73

0.70

12.84

9.70

0.16

6.75

8.53

3.20

0.90

0.13

390

37.11

Kuusijärvi fm

BA (mg-bas)

r.

49.3-51.2

0.68-2

12.9-13.9

10.07-13

0.03-0.2

7.01-10.7

5.25-8.84

3.38-4.42

0.3-3.25

0.1-0.1

155-209

31.74-47.82

n=2

a.

50.25

1.34

13.40

11.54

0.11

8.86

7.05

3.90

1.77

0.10

182

39.78

IM (band)

r.

51.6

1.93

12.8

15

0.24

4.17

6.75

2.88

0.95

0.26

66

19.33-19.33

n=1

a.

19.33


Fig. 2. Total alkali vs. SiO2 plot (TAS) and mantle-primitive-normalized spider diagrams for the Salla (a,b) and Kuusamo groups (c,d). Dashed lines = main clustering. Spider diagrams (b,d) based on average values for each unit rock type. Upper Continental Crust (UCC), Middle Continental Crust (MCC) and Lower Continental Crust (LCC). For references see Köykkä et al., 2022.


Fig. 3. Photographs of outcrops from the Salla belt Sumi system (Salla group = a-d) and Sariola system (Kuusamo group = e-h). Salla group – Sumi system: a) A small pipe vesicles (keys = 6 cm). b) Elongated flow stretched vesicles (scale = 15 cm). c) Pumice fragments floating in a fine-grained tuff matrix. g) Roundish to elongated lithophysae (originally vapour cavities), the size varying from 1–2 cm up to 20–35 cm. Kuusamo group – Sariola system: e) Hyaloclastic material in a basaltic lava flow. f) A mattress-shaped pillow in basaltic lava flow with hyalotuff interbeds. e) A grooved feature in the top of the lava flow representing a ropy lava structure. h) Columnar jointing in a basaltic lava flow.

Tectonic evolution and shield-wide correlations at 2.52–2.40 Ga

According to this study, the tectonic setting of different rock units at 2.52–2.40 Ga in Fennoscandia follows a framework for the plumbing system of continental large igneous provinces (LIPs) associated with mantle plumes (Ernst et al., 2019). This study also combines the LIP record from the dykes and layered intrusions and propose a new model where the 2.45–2.44 Ga represents the plume arrival, and both radiating swarm and the circumferential stages. In this model the 2.43–2.40 Ga more primitive magmatic stage indicates a final gravitational collapse of the LIP mantle plume and intrusion in and through the pre-existing structures formed mainly during the 2.45–2.44 Ga LIP stage. An occurrence of a new plume head at 2.40 Ga is also possible as proposed by Davey et al. (2020). In Fig. 4 the least extended and shortened main Archean blocks in Fennoscandia are based on the existence of preserved Paleoproterozoic 2.51–2.40 Ga basins with a rift axis and approximately similar-aged dykes having coherent trends.

Based on new structural observations and geochemistry, this study adapts the Large Igneous Province (LIP) and mantle plume model for the 2.51–2.49 Ga and 2.45–2.44 Ga magmatic stages in the northern Fennoscandian Shield, where the former corresponds to the Mistassini LIP and the latter correlates with the Matachewan LIP (Ernst and Bleeker, 2010; Kulikov et al., 2010). This study also supports model of the break-up of Archean Fennoscandia into the Kola, Norrbotten, Pudasjärvi and Karelia blocks at 2.15–1.98 Ga with later reassembly at 1.92–1.90 Ga during the Svecofennian and Lapland–Kola orogenies (Fig. 4a).

Table 2 summarizes the shield-wide correlations at 2.51–2.40 Ga. Mantle plume location A in Fig. 4b would make the Fedorovo-Pansky intrusion (F) an intrusion ringing the plume centre, with Tshokkoaivi an intrusion along the dyke (T), and the Liinakhamari dykes forming radiating dykes (Li). Mantle plume location B in Fig 4.b is based on the paleomagnetic pole of the 2.51 Ga Shalskiy dykes. Model B would imply that the Fedorovo-Pansky intrusion is an intrusion along the dyke, the Liinakhamari dykes are circumferential dykes, and the granites are circumferential granites. Kola and Karelia show similar paleomagnetic poles at ca 2.45 Ga, indicating that they have been on the same latitude and probably attached together at that time (Salminen et al., 2021 and references therein). The ca. 2.45–2.43 Ga layered intrusions (e.g. Huhma et al., 2018; Bayanova et al., 2019) and granites (e.g. Lauri et al., 2012) form intrusions ringing the plume center (Fig. 4b). This would favor the occurrence of a LIP, as proposed earlier (Ernst and Bleeker, 2010), and indicate that the plume centre has been close to the present NNW part of Fennoscandia. In model presented this paper, the WNW-trending and SW-trending 2.40 Ga dykes have intruded in the 2.45–2.43 Ga circumferential crustal weak zones (Fig. 4b). There is an also change from basaltic andesite–andesite-dominated Sumi volcanism to more primitive, partly komatiitic Sariola basalts at 2.43–2.40 Ga. Based on the age of 2424 ± 5 Ma from the Lehtomaa dyke, considered comagmatic with the Kuusamo group basalts, the 2412 ± 17 Ma age of Sariola basalt in Lehkta (Myskova et al., 2012), and 2407 ± 6 Ma (Puchtel et al., 2016) and 2405 ± 5 Ma (Mezhelovskaya et al., 2016) ages from the Vetreny belt (see Table 2), we consider that volcanism was active at least from 2.42 to 2.40 Ga. The 2.40 Ga dykes in the Fennoscandian Shield could be considered as the aftermath of this event (see Table 2).

In overall, the emplacement of the 2.42–2.40 Ga rocks follows the pre-existing structures formed during the 2.45–2.44 Ga LIP stage (Fig. 4b). The giant radiating dyke swarms were generated during domal uplift above a mantle plume. The subsidence and associated quicker transport of mantle melts could indicate that this stage is a final gravitational collapse stage of the 2.45–2.44 Ga mantle plume, or the significant subsidence might be due to a new plume head temporarily ponding below the 660-km phase-change boundary. The change in magmatism to a more primitive nature could be due to material coming from the hotter interior of the plume head or plume tail, or the rise of a new plume. The basin subsidence and the rapid uplift of rift margins indicates dynamic interaction of lithospheric and surface processes due to plume-lithosphere interactions, which can be seen as distinct geological record and stratigraphic patterns (see Friedrich et al., 2018; Buchan and Ernst, 2021). This can explain the extensive erosional period between the deposition of the Sumi and Sariola system rocks, as well as the exhumation of the 2.44 Ga layered intrusions.


Fig. 4. a) A sketch of the least deformed Archean blocks in Fennoscandia. Note that areas between the outlined Archean blocks include both Archean and Paleoproterozoic rocks in zones that exemplify both break-up and collisional processes. The rotation of the Pudasjärvi block is from Davey et al. (2020) and other rotations are by the authors. Swarm trend terminology from Ernst et al. (2019). b) Stars A and B are alternative models for 2.51-2.49 Ga plume centre (see text). Supracrustal belts: Ve = Vetreny; Le = Lehkta; Sh = Shombozero; Ku = Kuusamo; Pa = Paanajärvi; Ko = Kukasozero; Sa = Salla; V = Vuotso; Pe = Pechenga; IV = Imandra–Vardzuga. Intrusions and dykes: B = Burakovka, J = Junttilanniemi; Nä = Näränkävaara, TK = Tornio–Kukkola; Ke = Kemi; O = Oulanga, A = Akanvaara; K = Koitelainen; T = Tsokkoaivi, Tr = Troms, So = Sorvaranger; Li = Liinakhamari, Mt = Mt. Generalskaya, M = Monchegorsk/ Monchetundra, F = Fedorovo-Pansky, I = Imandra.  b) Sketch of Fennoscandia at 2.51–2.49 Ga, 2.45-2.44 Ga (Sumi) and 2.43-2.40 Ga (Sariola). S = Shalskiy, J-To = Junttilanniemi–Topozersky, Ke-O = Kemi–Oulanga, On = Onkamonlehto.

Table 2. Summary of the U-Pb, Sm-Nd and Re-Os geochronological data. All ages in Ma. epsNd(T) value is based on U-Pb zircon dating, except for Salla gp / Petservaara fm (geological correlations). See references from Köykkä et al, 2022 App. CLB = Central Lapland belt, SB = Salla belt and KB = Kuusamo

Geological unit

Lithology

Area

U-Pb age

Sm-Nd age

epsNd(T)

TDM

Re-Os age

Ref.

SUMI SYSTEM LIP MAGMATISM 2.51-2.49 Ga

Ahvenselkä suite

granite (porphyritic)

FI / CLB

2524 ± 8

-1.9

2809

12, 15, 18

Pomokaira complex

felsic gneiss

FI / CLB

2506 ± 6

-1.0

2895

13, 15, 26

Pomokaira complex

gneiss (quartz-feldspar)

FI / CLB

2501 ± 5

12, 15, 18

Salla gp / Rookkiaapa fm

felsic volcanic breccia

FI / CLB

2505 ± 5

-3.2

2930

13, 17

Silisjoki suite

granodiorite

FI / CLB

2504 ± 10

13, 15, 18

Tshokkoaivi intrusion

gabbro

FI / CLB

2499 ± 11

-1.8

2458

13

Varttasaari suite

tonalite

FI / CLB

2520 ± 9

-1.4

2814

12, 15, 18

Vuotso complex

gneiss (arkosic)

FI / CLB

2509 ± 8

12, 15

Fedorovo-Pansky massif

orthopyroxenite

RU

2526 ± 6

2521 ± 42

-1.7

7, 27, 29

Fedorovo-Pansky massif

olivine gabbro

RU

2516 ± 7

2516 ± 35

-1.4

7, 27, 29

Fedorovo-Pansky massif

magnetite gabbro

RU

2498 ± 5; 2500 ± 10

3, 7, 25

Fedorovo-Pansky massif

gabbronorite

RU

2491 ± 1.5; 2501 ± 1.7; 2500 ± 3

2487 ± 51

-2.1

1, 2, 7, 21

Liinahamari dyke

qtz dolerite

RU

2508 ± 6

30

Monchetundra

plagiopyroxenite

RU

2502 ± 5.9

7, 25

Monchetundra

gabbronorite

RU

2504 ± 7.4

7, 25

Monchetundra

gabbronorite

RU

2501 ± 8; 2505 ± 6

3, 7

Mt. Generalskaya

gabbronorite

RU

2496 ± 10; 2505 ± 1.6

2453 ± 42

1, 5, 7

Mt. Generalskaya

Dunite block, dike

RU

2505 ± 1.7

7, 22

Mt. Generalskaya

Mt. Travyanaya, norite

RU

2507 ± 9

6, 7

Mt. Generalskaya

Dunite block, gabbronorite dike

RU

2506 ± 10; 2496 ± 14

6, 7

Mt. Generalskaya

Nyud Terrace, gabbronorite

RU

2500 ± 5

4, 7

Mt. Generalskaya

Nyud Terrace, gabbronorite

RU

2493 ± 7; 2504 ± 1.5

2492 ± 31

-1.4

1, 5, 7, 31

Mt. Generalskaya

Nyud Terrace, gabbronorite

RU

2503.5 ± 4.6

7, 21

Mt. Generalskaya

Monchepluton, gabbronorite

RU

2498.2 ± 6.7

7, 21

Mt. Generalskaya

Vurechuaivench foothills, gabbronorite

RU

2497 ± 21; 2498 ± 6.7

6, 7

Mt. Generalskaya

Olenegorsk deposit, qtz diorite

RU

2495 ± 13

6, 7

Shalskiy dyke

gabbronorite

RU

2608 ± 56

-1.2

19

 

Geological unit

Lithology

Area

U-Pb age

Sm-Nd age

epsNd(T)

TDM

Re-Os age

Ref.

SUMI SYSTEM LIP MAGMATISM 2.45-2.44 Ga

Akanvaara intrusion

gabbro

FI / CLB

2436 ± 6

13, 23

Koitelainen intrusion

granophyre

FI / CLB

2434 ± 5

13

Salla gp / Rookkiaapa fm

felsic volcanite

FI / CLB

2438 ± 11

-8.1

3520

13

Salla gp / Petservaara fm

felsic tuff

FI / SB

2438 ± 49

-4.4

3101

11

Salla gp / Petservaara fm

felsic tuff

FI / SB

2432 ± 26

-3.1

2944

11

Salla gp / Purkkivaara fm

rhyolite

FI / SB

2441 ± 2

-2.3

2843

13

Imandra–Varzuga / Seidorechka

rhyodacite

RU

2448 ± 8

-2.8

2864

8

Shombozero

andesite

RU

2439 ± 21

-3.8

24

 

Geological unit

Lithology

Area

U-Pb age

Sm-Nd age

epsNd(T)

TDM

Re-Os age

Ref.

SARIOLA SYSTEM MAGMATISM 2.42-2.40 Ga

Uolevinlehto dyke

gabbro

FI

2400 ± 12

9

Kuusamo gp / Kuntijärvi fm

felsic cgl clast

FI / KB

2428 ± 3

-2.8

13

Kuusamo gp / Mäntyvaara fm

komatiitic basalt

FI / SB

-2.4

13

Lehtomaa dyke

gabbro

FI / SB

2424 ± 5

-3.4

13, 16

Onkamolehto dyke

diabase

FI / SB

2403 ± 3

-0.7

13

Troms

gabbronorite

NO

2403 ± 3

-1.5, -1.8

10, 14

Lehkta

andesite

RU

2412 ± 17

-3.4

3102

24

Vetreny belt

komatiitic basalt

RU

2407 ± 6

10, 28

Vetreny belt

komatiitic basalt

RU

2405 ± 5

20

References

Bayanova, T., Korchagin, A., Mitrofanov, A., Serov, P., Ekimova, N., Nitkina, E., Kamensky, I., Elizarov, D., Huber, M., 2019. Long-lived mantle plume and polyphase evolution of palaeoproterozoic PGE intrusions in the Fennoscandian Shield. Minerals 9 (59),1–22. https://doi.org/10.3390/min9010059.

Bogina, M., Zlobin, V., Svetov, S., Sharkov, E., Chistyakov, A., 2018. Petrogenesis of siliceous high-Mg series: Evidence from Early Paleoproterozoic mafic volcanic rocks of the Vodlozero Domain, Fennoscandian Shield. Geosci. Front. 9, 207-221. https://doi.org/10.1016/j.gsf.2017.02.009.

Buchan, K.L., Ernst, R.E., 2021. Plumbing systems of large igneous provinces (LIPs) on Earth and Venus: Investigating the role of giant circumferential and radiating dyke swarms, coronae and novae, and mid-crustal intrusive complexes, Gondwana Res. 100, 25-43. https://doi.org/10.1016/j.gr.2021.02.014.

Ciborowski, T.J.R., Kerr, A.C., Ernst, R.E., McDonald, I., Minifie, M.J., Harlan, S.S., Millar, I.L., 2015. The early proterozoic Matachewan large Igneous Province: Geochemistry, petrogenesis, and implications for earth evolution. J. Petrol. 56, 1459–1494. https://doi.org/10.1093/petrology/egv038.

Davey, S.C., Bleeker, W., Kamo, S.L., Vuollo, J., Ernst, R.E.  and Cousens, B.L., 2020. Archean block rotation in Western Karelia: Resolving dyke swarm patterns in metacraton Karelia-Kola for a refined paleogeographic reconstruction of supercraton Superia. Lithos 368–369, 105553. https://doi.org/10.1016/j.lithos.2020.105553.

Ernst, R.E., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can. J. Earth Sci. 47, 695–739. https://doi.org/10.1139/E10-025.

Ernst, R.E., Liikane, D.A., Jowitt, S.M., Buchan, K.L., Blanchard, J.A., 2019. A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volc. Geoth. Res. 384, 75-84. https://doi.org/10.1016/j.jvolgeores.2019.07.007.

Friedrich, A.M., Bunge, H.-P., Rieger, S.M., Colli, L., Ghelichkhan, S., Nerlich, R., 2018. Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Res. 53, 159–188. https://doi.org/10.1016/j.gr.2017.06.003.

Hanski, E. 2013. Evolution of the Palaeoproterozoic (2.50–1.95 Ga) non-orogenic magmatism in the eastern part of the Fennoscandian Shield. In: Melezhik, V. A., Prave, A. R., Hanski, E. J., Fallick, A. E., Lepland, A., Kump, L. R. & Strauss, H. (Eds.), Reading the Archive of Earth’s Oxygenation, Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Earth Project. Berlin, Heidelberg: Springer-Verlag, 179–245. https://doi.org/10.1007/978-3-642-29682-6_6.

Hanski, E.J., Melezhik, V.A., 2013. Litho- and chronostratigraphy of the Karelian formations. In: Melezhik, V. A., Prave, A. R., Hanski, E. J., Fallick, A. E., Lepland, A., Kump, L. R. & Strauss, H. (Eds.), Reading the Archive of Earth’s Oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project. Berlin, Heidelberg: Springer-Verlag, 39–110 https://doi.org/10.1007/978-3-642-29682-6_4.

Huhma, H., Hanski, E., Kontinen, A., Vuollo, J., Mänttäri, I. and Lahaye, Y., 2018. Sm-Nd and U-Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland. Geo. Sur. Fin., Bull. 405, 153 p. http://tupa.gtk.fi/julkaisu/bulletin/bt_405.pdf.

Kulikov, V.S., Bychkova, Ya.V., Kulikova, V.V., Ernst, R., 2010. The Vetreny Poyas (Windy Belt) subprovince of southeastern Fennoscandia: an essential component of the 2.5-2.4 Ga Sumian large igneous province. Prec. Res.183, 89–601. https://doi.org/10.1016/j.precamres.2010.07.011.

Lahtinen, R., Huhma, H., Sayab, M., Lauri, L., Hölttä, P., 2018. Age and structural constraints on the tectonic evolution of the Paleoproterozoic Central Lapland Granitoid Complex in the Fennoscandian Shield. Tectonophysics 745, 305–325. https://doi.org/10.1016/j.tecto.2018.08.016.

Lauri, L.S., Mikkola, P., Karinen, T., 2012. Early Paleoproterozoic felsic and mafic magmatism in the Karelian province of the Fennoscandian shield. Lithos 151. https://doi.org/10.1016/j.lithos.2012.01.013.

Salminen, J., Pehrsson, S., Evans, D.A.D. and Wang., C., (2021). Chapter 15: Neoarchean-Paleoproterozoic supercycle. In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å. and Veikkolainen, T. (Eds), Ancient Supercontinents and the Paleogeography of the Earth, Elsevier.

Stepanova, A.V., Salnikova, E.B., Samsonov, A.V., Egorova, S.V., Larionova, Y.O., Stepanov, V.S., 2015. The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics and implications for continental break-up processes. Prec. Res. 259, 43–57. https://doi.org/10.1016/j.precamres.2014.10.002.

Söderlund, U., Hofmann, A., Klausen, M.B., Olsson, J.R., Ernst, R.E., Persson, P.O., 2010. Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Prec. Res. 183, 388–398. https://doi.org/10.1016/j.precamres.2009.11.001.

Vuollo, J., Huhma, H., 2005. Paleoproterozoic mafic dikes in NE Finland. In: Lehtinen M., Nurmi P.A., Rämö O.T. (Eds.), Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, 195–236. https://doi.org/10.1016/S0166-2635(05)80006-4.