2022 February LIP of the Month

Mafic dyke swarms of Brazil: summary and highlights

Pedro C. Pessanoa,b*, Carlos E. Ganadeb, Miguel Tupinambác, Wilson Teixeirad

aDepartment of Geophysics, National Observatory, R. Gal. José Cristino, 77, 20921-400 Rio de Janeiro, RJ, Brazil

bCenter for Applied Geosciences, Geological Survey of Brazil, Av. Pasteur, 404, 22290-240 Rio de Janeiro, RJ, Brazil

cFaculty of Geology, Rio de Janeiro State University, Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ, Brazil

dInstitute of Geosciences, University of São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil

*Corresponding author at: Department of Geophysics, National Observatory, R. Gal. José Cristino, 77, 20921-400 Rio de Janeiro, RJ, Brazil.

E-mail address: ppessano@gmail.com (P. Pessano)

Extracted from:

Pessano, P. C., Ganade, C. E., Tupinambá, M., Teixeira, W. (2021). Updated map of the mafic dike swarms of Brazil based on airborne geophysical data. Journal of South American Earth Sciences, v. 107, 103076. https://doi.org/10.1016/j.jsames.2020.103076.

1. Introduction

The magmatic record of Brazil spans from the Archean to the Cenozoic (Fig. 1). These episodes occur as dykes, sills, and flood basalts, and are related to relevant extensional events, although some are linked to extension/transtension domains within regional compressive zones. Most of these events date to the Precambrian; nonetheless, the largest records are those of the Phanerozoic, mainly the Mesozoic ones.

Identification of mafic dyke swarms and LIPs (Large Igneous Provinces) are of vital importance in geologic history because they provide information on geodynamics, mantle geochemistry, and paleomagnetism, key information for paleogeographic reconstructions with the aid of barcode matches and precise radiometric ages. Considering such issues, the Brazilian Precambrian shield can be used as a case for refining the cartography of the relevant intraplate activity (e.g., dykes, sills, flood basalts) in space and time. Also, LIPs may have an influence on the global climate, including extinction events, as recorded by the global stable isotopic excursions (Ernst et al., 2020a; 2020b; Ernst and Youbi, 2017; Ernst, 2014, and references therein) and changes in sedimentary composition (Zhang et al., 2018). Figure 2 exhibits the temporal distribution of mafic dyke swarms and LIPs in Brazil, along with their associated secular change.

In this web piece, we present an updated map of the mafic dyke swarms of Brazil with a closer look at the mysterious shape of the Rio Ceará-Mirim dyke swarm. This event is closely related to the opening of the Equatorial Atlantic and thus, understanding this process, its causes and implications is a matter of great importance. More details on how the map was elaborated, barcode matches, and more illustrations can be found in the original paper.

2. Updated map of the mafic dyke swarms of brazil


Figure 1 – Updated mafic dyke swarms map of Brazil. This map exhibits the main cratonic terranes, mobile belts, sedimentary basins, and the cataloged mafic dyke swarms and magmatic suites and/or formations. In addition, we highlighted the Cretaceous Serra Geral Flood Basalts within the Paraná Basin. The Arabic numerals refer to cataloged dyke swarms, and the Roman numerals indicate magmatic suites and/or formations (see Table 1, Table 2, and Supplementary Material for further details). AR: Argentina, BO: Bolivia, CO: Colombia, GY: Guianas, GF: French Guiana, PY: Paraguay, PE: Peru, SR: Suriname, UY: Uruguay, VE: Venezuela. Extracted from Pessano et al. (2020).  For full details, see the original article.

Table 1 – Mafic dyke swarms of Brazil (see notes at bottom of table).

ID

Unit

Trend

Period

Age (Ma)

Method

LIP/Event

References

1

Arraial do Cabo

N50E, N30W

Paleogene

55

Ar-Ar

13, 9

2

Riacho do Cordeiro

N40-60E

Cretaceous

119 ± 2

K-Ar

EQUAMPL

54

3

Canindé

N60E,

N25-50W

Cretaceous

135 - 120

K-Ar

EQUAMPL

54

4

Rio Ceará-Mirim

N20-85E

Cretaceous

145 - 120

K-Ar

EQUAMPL

54, 34, 3

5

Coronel João Sá

N25-45E

Cretaceous

212 - 103

Rb/Sr, Ar/Ar

EQUAMPL

26, 11

6

Serra do Caiapó

N30-55E

Cretaceous

130

K-Ar/Ar-Ar

Paraná-EtendekaL

28, 3

7

Transminas

N25-45E, N25-65W

Cretaceous

130

Ar-Ar

Paraná-EtendekaL

42, 30, 13

8

Ponta Grossa

N30-70W

Cretaceous

133

K-Ar/Ar-Ar

Paraná-EtendekaL

50, 36, 27

9

Serra do Mar

N10-80E

Cretaceous

134

K-Ar/Ar-Ar

Paraná-EtendekaL

43, 42, 30, 27

10

Florianópolis

N15-80E

Cretaceous

134.1 ± 0.9

U-PbT

Paraná-EtendekaL

50, 36

11

Vitória-Colatina

N10-60W

Cretaceous

136 - 128

Ar-Ar

Paraná-EtendekaL

43, 42, 3

12

Penatecaua

N15-75E, N20-70W

Jurassic

148 ± 6

K-Ar

PenatecauaL

32, 8, 3

13

Apoteri

N50-60E

Jurassic

149.5 ± 0.3, 153 ± 0.9

Ar-ArSH

TakutuE

32, 14

14

Cururu

N10-30E, N50-60W

Jurassic

180 ± 9

K-Ar

CAMPL

8

15

Periquito

N0-60E,

N05-65W

Jurassic

192 ± 3

Ar-Ar,

K-Ar

CAMPL

58, 29

16

Carajás

N20E,

N40-45W

Jurassic

199.3 ± 0.3

U-PbSp

CAMPL

58

17

Mosquito Fm.

N65-80E

Jurassic

200

Ar-Ar

CAMPL

54

18

Laranjal

N05-75E, N05-60W

Jurassic

200

Ar-Ar

CAMPL

31, 22

19

Rio Trombetas

N05-10E, N50-70W

Jurassic

200

K-Ar

CAMPL

3

20

Taiano

N15-65E

Jurassic

200

Ar-ArSH

CAMPL

32, 14

21

Cassiporé

N05-80E,

N0-60W

Jurassic

202 ± 2

Ar-Ar

CAMPL

58, 38, 37, 3

22

Uaraná

N35-90E, N05-60W

Jurassic

202 ± 5

U-Pb

CAMPL

51, 32

23

Rio Pajéu

N05-60E

Jurassic

215 - 170

Field relations

CAMPL

45, 39, 23

24

Piranhas

N10-70E, N15-65W

Cambrian

507 ± 4

U-PbSp

PiranhasE

8

25

Fundão

N10-20W

Cambrian

498 ± 16,

525 ± 10

U-PbSp, LA

43, 35

26

Itabaiana

N10-55W

Cambrian

525 ± 5

Ar-ArSH

48, 35, 21, 17, 15

27

Parauapebas

N0-15E

Cambrian

535.1 ± 0.9

U-PbSp

535 MaE

58

28

Conceição-Santana do Araguaia

N05-50W,

N0-50W

Ediacaran

565 ± 6 - 480 ± 22

K-Ar

535 MaE

47, 2

29

Itabuna-Itaju

do Colônia

N25-70E, N10-35W

Cryogenian

676 ± 5,

665 ± 25

U-Pb, Rb-Sr

7, 1

30

Pará de Minas III

N50-60W

Tonian

766 ± 36

U-PbT

GannakouriepL

59, 41, 30, 13, 3

31

Formiga

N25-90E

Tonian

906 ± 2,

896 ± 11

U-Pb

Bahia-GangilaL

59, 52, 30, 13

32

Salvador

N15W

Tonian

924.2 ± 3.8

U-PbT

Bahia-GangilaL

52, 49, 44, 11

33

Ilhéus-Olivença

N40-90E, N25-85W

Tonian

926.1 ± 4.6

U-PbT

Bahia-GangilaL

52, 49, 44, 11

34

Rio Perdido

N45-90E

Stenian

1110.7 ± 1.4

U-PbT

Rincón del Tigre-HuanchacaL

58, 57

35

Seringa

N05-75E, N10-80W

Stenian

1079 ± 18

K-Ar

Cachoeira SecaE

57, 56, 8

36

Siriquiqui

N05-60E, N10-40W

Stenian

1164 ± 23

K-Ar

Cachoeira SecaE

8

37

Tapuruquara

N45-90E

Stenian

1172 ± 8

U-PbSp

Cachoeira SecaE

57, 32

38

Cachoeira Seca

N15-90E

Stenian

1186 ± 13

U-PbSp

Cachoeira SecaE

57, 8

39

Nova Floresta

N25-80E

Stenian

1201 ± 2

Ar-Ar

Cachoeira SecaE

57, 8

40

Nova Lacerda

N45-55W

Ectasian

1387 ± 17

U-PbT

1.4 GaE

57, 40

41

Espinhaço

N0-20E,

N0-20W

Calymmian, Jurassic

1496 ± 3.2;

193 ± 4

U-PbLA,

K-Ar

49, 16, 4, 3

42

Chapada Diamantina

N10-70W

Calymmian

1501 ± 9.1

U-Pb

33, 11

43

Curaçá

N25-60E

Calymmian

1506.7 ± 6.9

U-Pb

33, 11

44

Mata-Matá

N40-70E

Calymmian

1576 ± 4

U-PbSp

57

45a

Pará de Minas II

N50-60W

Statherian

1714 ± 5, 1736 ± 36

U-PbT

1.79 – 1.75 GaL

59, 41, 30, 13, 3

45b

Pará de Minas I

N50-60

Statherian

1791 ± 7, 1798 ± 4

U-PbT

1.79 – 1.75 GaL

59, 41, 30, 13, 3

46

Januária

N05-55W

Statherian

1762 ± 2

U-PbT

TimptonL

53, 30, 13

47

Quarenta Ilhas

N20-70E, N30-65W

Statherian

1780 ± 3

U-PbSp

AvanaveroL

57, 32, 12

48

Crepori

N15-55E

Statherian

1780 ± 7

U-PbSp

CreporiE

57, 8

49

Taxista Gabbro

N30-55E

Orosirian

1859 ± 15

U-PbSp

UatumãS

57

50

Uraricaá

N40-65W

Orosirian

1882 ± 4

U-PbSp

UatumãS

57, 32

51

Tucumã

N15-70W

Orosirian

1882 ± 9

U-PbSp

UatumãS

58, 46

52

Carajás

N40-70E, N30-80W

Orosirian

1884.6 ± 1.6

U-PbSp

UatumãS

58

53

Ingarana

N20-50E

Orosirian

1893 ± 10

U-PbSp

UatumãS

57, 8

54

Feira de Santana

N0-50W

Rhyacian

2100

Field relations

11, 26

55

Crixás-Goiás

N15-70E, N10-80W

Rhyacian

2170 ± 17

U-Pb

19, 18, 10, 3

56

Paraopeba

N15-30E, N10-75W

Rhyacian

2189 ± 45

Rb-Sr

30, 20, 13

57

Aroeira

N05-65E, N20-40W

Rhyacian

2200

Field relations

33, 26, 24, 11

58

Juazeiro and Sobradinho

N0-40E, N10-45W

Rhyacian

2300 - 2051

Field relations

26, 11

59

Lavras

N30-60W

Neoarchean

2658 ± 44, 2551.1 ± 9.8

Sm-Nd,

U-Pb

59, 30, 13, 6, 5, 3

60

Uauá

N0-60E, N10-45W

Neoarchean

2726.2 ± 3.2, 2623.8 ± 7

U-Pb

55, 25, 11

Notes for Table 1. The azimuth (Trend) corresponds to the arithmetic mean of the dykes directions. SH: Step heating, LA: LA-ICP-MS, Sp: SHRIMP, T: TIMS, E: Magmatic Event, L: LIP, S: SLIP. 1) Cordani et al. (1974), 2) Gorayeb (1981), 3) Sial et al. (1987), 4) Dossin et al. (1995), 5) Pinese et al. (1995), 6) Pinese (1997), 7) Teixeira et al. (1997), 8) Santos et al. (2002), 9) Bennio et al. (2003), 10) Corrêa da Costa (2003), 11) Dalton de Souza et al. (2003), 12) Santos et al. (2003), 13) Chaves & Neves (2005), 14) Reis et al. (2006), 15) Trindade et al. (2006), 16) Teixeira (2008), 17) Almeida & Hollanda (2009), 18) Corrêa da Costa et al. (2010), 19) Jost & Scandolara (2010), 20) Chaves (2011), 21) Guimarães (2011), 22) Klein & Lopes (2011), 23) Macambira & Ricci (2011), 24) Piaia (2011), 25) Oliveira (2011), 26) Leal et al. (2012), 27) Tomba (2012), 28) Almeida et al. (2013), 29) Costa et al. (2013), 30) Chaves (2013), 31) Klein et al. (2013), 32) Reis et al. (2013), 33) Silveira et al. (2013), 34) Castro (2014), 35) Fleck (2014), 36) Florisbal et al. (2014), 37) Rosa-Costa et al. (2014), 38) Barbosa & Chaves (2015), 39) Barros & Besser (2015), 40) Teixeira et al. (2015), 41) Cederberg et al. (2016), 42) Coelho (2016), 43) Coelho & Chaves (2016), 44) Evans et al. (2016), 45) Macambira et al. (2016), 46) Silva et al. (2016), 47) Gorayeb et al. (2017), 48) Guimarães et al. (2017), 49) Moreira (2017), 50) Florisbal et al. (2018), 51) Baratoux et al. (2019), 52) Chaves et al. (2019), 53) Chaves & Rezende (2019),  54) Hollanda et al. (2019), 55) Salminen et al. (2019), 56) Simões et al. (2019), 57) Teixeira et al. (2019a), 58) Teixeira et al. (2019b), 59) Caxito et al. (2020). For full details, see the original article.

Table 2 – Suites and formations that correspond to important events of intrusive mafic magmatism on the Brazilian Platform (see notes at bottom of table).

ID

Unit

Period

Age (Ma)

Method

Event

References

I

Tapirapuã

Jurassic

196.6 ± 1.8

Ar-ArIH

CAMPL

5, 1

II

Anari

Jurassic

198 ± 0.8

Ar-ArIH

CAMPL

5, 1

III

Pedro Lessa Suite

Tonian

940 ± 42

U-PbT

Bahia-GangilaL

12, 9

IV

Rio Branco Suite (RO)

Stenian

1110 ± 10

U-PbT

Rincón del Tigre-HuanchacaL

13, 4, 2

V

Indiavaí Suite

Calymmian

1416 ± 7

U-PbT

1.4 GaE

13, 7

VI

Rio Branco Suite (MT)

Calymmian

1423 ± 2

U-PbT

1.4 GaE

13, 6, 3

VII

Figueira Branca Suite

Calymmian

1426 ± 8

U-PbT

1.4 GaE

13, 7, 6

VIII

Salto do Céu Gabbro

Calymmian

1439 ± 4

U-PbT

1.4 GaE

13, 11, 6

IX

Avanavero Dolerite

Statherian

1794.5 ± 1.6; 1787 ± 14;

1782 ± 3

U-PbT&Sp

AvanaveroL

10, 8, 2

X

Estrutura Suite

Statherian

1800 - 1600

Field relations

10, 8

Notes for Table 2. Suites and formations that correspond to important events of intrusive mafic magmatism on the Brazilian Platform. IH: Incremental Heating, T&Sp: TIMS & SHRIMP, T: TIMS, E: Magmatic Event, L: LIP. 1) Marzoli et al. (1999), 2) Rizzotto et al. (2002), 3) Geraldes et al. (2004), 4) Rizzotto et al. (2004a), 5) Rizzotto et al. (2004b), 6) Ruiz (2010), 7) Teixeira et al. (2011), 8) Reis et al. (2013), 9) Fonseca (2014), 10) Holanda et al. (2014), 11) Teixeira et al. (2015), 12) Chaves et al (2019), 13) Teixeira et al. (2019a). For full details, see the original article.

The most frequent dyke records in the Brazilian territory are related to the Proterozoic (Figs. 1, 2; Table 1), related to intraplate episodes and LIPs/SLIPs, roughly contemporary or slightly younger than the orogenic processes that built the continental crust (Teixeira et al., 2019a). This finding corroborates with the proposal of Halls (1982), who suggested a relationship between magmatism and the higher geothermal gradient at that time to anomalies in the mantle convection. In other words, this Eon registers an abundance of continental swarms when compared to the Phanerozoic. The younger records, in general, are magmatic episodes linked with the opening of the Atlantic Ocean and fragmentation of the Gondwana (Marzoli et al., 1999, 2018; Hollanda et al., 2019).

Another interesting point is the relative absence of mafic magmatism in the Paleozoic Era and the beginning of the Mesozoic in the South American Platform (Fig. 2). During this interval, large continental masses were converging to form the Pangea Supercontinent in the Upper Permian (Young et al., 2019, and references therein), while sedimentation was occurring in the Brazilian intracratonic Paleozoic basins (Schobbenhaus and Brito Neves, 2003). The records partially confirm the expected: large mafic dyke swarms - the onset of LIPs and/or SLIPs - and the formation of supercontinents tend to alternate over the geological time (Ernst and Bleeker, 2010). Only one Cryogenian unit was identified (site 29; Fig. 1), though it is probably biased due to the data compilation.

The Phanerozoic magmatic record of Brazil is marked by two main events. The first occurred in the Cambrian and is the result of extensional/transtensional movements in the crust after the Brasiliano Event. The second took place in the Mesozoic and is related to the opening processes of the Atlantic Ocean.

Mesozoic magmatism is closely related to the opening process of the Atlantic Ocean and consists of large circumferential, radial, and rectilinear dyke swarms. Three magmatic pulses define the Brazilian Mesozoic magmatism. The first event, the Central Atlantic Magmatic Province (CAMP), occurred around 200 Ma in northern South America and marks, as indicated by its name, the opening of the Central Atlantic Ocean (Marzoli et al., 1999, 2018). The second episode - the Paraná-Etendeka Magmatic Province (PEMP) - took place in southern-southeastern Brazil around 135 Ma and registers the onset of the South Atlantic opening (Renne et al., 1992; Peate 1997; Ernst and Buchan, 1997).

 The third and final pulse – recently named as Equatorial Atlantic Magmatic Province (EQUAMP, Hollanda et al., 2019) or Borborema LIP (Matos, 2021) – contributed to the opening of the Equatorial Atlantic in northeastern Brazil at approximately 125 Ma (Holland et al., 2019). Different from the other Mesozoic swarms, this one exhibits a curious shape that will be discussed below.

3. The arcuate shape of the rio ceará mirim dykes: does it represent a circumferential swarm?

Buchan and Ernst (2018, 2019) suggest that the semi-arch pattern of the Rio Ceará-Mirim (site 4; Figs. 1, 3) dykes can be related to a couple of reasons: i) changes in the stress fields of the crust, or ii) posterior deformation. There were no major deformational events in that region after the Cretaceous, so the most plausible hypothesis is that of changes in the crustal stress field. This idea corroborates with Oliveira (1992), who suggested that the minimum compressive stress axis changed from NW-SE to N–S around the Potiguar Basin. Alternatively, Matos (1992) proposed a clockwise rotation of the least-principal compressive stress north of the Patos Shear Zone. Thus, considering the structural geology of the Borborema Province (NE Brazil), where the most notable arching occurs, the dykes possibly followed, in part, some local E-W trending shear zones (e.g., Patos shear zone), and then cut at quasi-normal angles those that occur within each tectonic domain.


Figure 2 – Chronostratigraphic chart of the intrusive mafic records (arrows), major and minor Phanerozoic extinction events (red and green crosses, respectively), LIPs and/or magmatic events (stars) from the Neoarchean in which the oldest dykes of Brazil are found, to the Paleogene, most recent period with a cataloged mafic record. A: Archean, Cz: Cenozoic, O: Ordovician, Tr: Triassic; a: Eocene-Oligocene Extinction (33.9 Ma), b: End-Cretaceous Extinction (66.0 Ma), c: Cenomanian-Turonian Extinction (93.9 Ma), d: Early Toarcian Extinction (182.7 Ma), e: End-Triassic Extinction (201.3 Ma), f: Cambrian-Ordovician Extinction (488 Ma). Extinction events from Ernst et al. (2020) and Ernst and Youbi (2017). For full details, see the original article.

Conversely, instead of the acquired arcuate shape, this circumferential geometry may be an original feature. As described by Buchan and Ernst (2019), circumferential swarms have approximately circular or elliptical shapes with diameters from hundreds to thousands of kilometers. The diameters are seen to influence the width of the dykes, as Buchan and Ernst (2019) noticed that the larger the diameter, the larger the dyke widths. Giant circumferential dyke swarms (diameters of 1500–2500 km) commonly form a coupled system with radiating dykes (e.g., PEMP and High Arctic Large Igneous Province, HALIP, dykes), which may indicate their plume origin (Buchan and Ernst, 2018, 2019). Buchan and Ernst (2019) propose that these circular geometries correspond to the edges of flattened plume heads and occur along the margins of the associated domal uplifts. One hypothesis is that the geometrical center of these circumferential dykes could constitute a plume center that would be placed at southern Gabon (Fig. 3). However, to date, no volcanic record has been reported in this area, and no mapping of the continuation of these dykes in equatorial Africa is available. Buchan and Ernst (2019) classify the PEMP dykes in Brazil and Namibia as a giant circumferential dyke swarm. In Brazil, the Ponta Grossa swarm (site 8; Figs. 1, 3) is perpendicular to the Serra do Mar and Florianópolis dykes (sites 9 and 10, respectively; Figs. 1, 3). These dykes are also intersected at quasi-right angles by some sparse sets that constitute the circumferential shape (Buchan and Ernst, 2019, Fig. 3). Buchan and Ernst (2019) did not include the EQUAMP/Borborema LIP dykes into this classification, probably due to the age difference - PEMP is ca. 135 Ma, while EQUAMP is ca. 130 Ma (Hollanda et al., 2019) - and different hotspots, PEMP is related to the Tristan da Cunha (Ernst and Buchan, 1997; Peate, 1997), and the EQUAMP/Borborema LIP is probably linked to the St. Helena (Matos et al., 2021; Archanjo et al., 2002; Steinberger, 2000; O’Connor and Le Roex, 1992). Nevertheless, despite the mentioned differences, both magmatic provinces could constitute one giant circumferential South Atlantic Magmatic Province in which the equatorial mafic swarms represent a later event.


Figure 3 – 130 Ma reconstruction of the South American and African Plates according to Müller et al. (2019). This map exhibits Jurassic and Cretaceous mafic records identified in Brazil and some Mesozoic mafic dyke in the African counterpart. The stars show the possible plume heads based on the orientation of the dikes. The circles highlight the arcuate pattern of Cretaceous dyke in northeastern and southeastern Brazil, as well as estimate the area of the EQUAMP swarm if it constitutes a circumferential swarm. The location and age of HOD and Okavango swarms are from Trumbull et al. (2004) and Trumbull et al. (2007). Am: Amazonian Craton, Cg: Congo Craton, Ka: Kalahari Craton, SF: São Francisco Craton, WA: West African Craton; HOD: Henties-Bay-Outjo dyke swarm. For full details, see the original article.

However, the issue of classifying the Rio Ceará-Mirim dykes as being a part of a larger circumferential swarm is that, as mentioned, we did not find any Cretaceous dykes in the African counterpart (Fig. 3), and the absence of accurate dating. High-precision U–Pb dating of the EQUAMP swarms would represent a great leap in classifying these dykes (Buchan and Ernst, 2019). It would permit us to correlate them with the Paraná-Etendeka records, as the Transminas segment (site 7) extends towards the Rio Ceará-Mirim southwestern branch (Figs. 1, 3). Based on the available data, it seems plausible that their semi-arch shape is due to the mentioned change in the stress field (Oliveira, 1992; Matos, 1992).

References

Almeida, J.C.H., Heilbron, M.C.P.L., Da Silva, R., Júnior, D.D.L.M., Tetzner, W., 2013. Guia de campo na Área Continental do Alto de Cabo Frio. Bol. Geociências Petrobras 21 (2), 325–355.

Almeida, V.V., Hollanda, M.H.B.M., 2009. Petrografia, química mineral e litoquímica de diques máficos cambrianos do extremo oriental do estado da Paraíba. Rev. Bras. Geociências 39 (3), 580–598. https://doi.org/10.25249/0375-7536.2009393580598.

Archanjo, C.J., Araújo, M.G.S., Launeau, P., 2002. Fabric of the Rio Ceará–Mirim mafic dike swarm (northeastern Brazil) determined by anisotropy of magnetic susceptibility and image analysis. J. Geophys. Res.: Solid Earth 107 (B3). https://doi.org/10.1029/2001JB000268. EPM 1-1-EPM 1-13.

Baratoux, L., Söderlund, U., Ernst, R.E., De Roever, E., Jessell, M.W., Kamo, S., Grenholm, M., 2019. New U-Pb baddeleyite ages of mafic dyke swarms of the West African and Amazonian Cratons: implication for their configuration in supercontinents through time. In: Srivastava, R.K., Ernst, R.E., Peng, P. (Eds.), Dyke Swarms of the World: A Modern Perspective. Springer Singapore, Singapore, pp. 263–314.

Barbosa, J.P.O., Chaves, C.L. (Eds.), 2015. Geologia e Recursos Minerais da Folha Macapá - NA.22-Y-D: Escala 1:250.000. CPRM, Belém, p. 116.

Barros, C.E.M., Besser, M.L., 2015. Carta Geológica da Folha Rio Bacajá SA.22-Y-D-VI. Prog. Geol. do Brasil. CPRM and UFPA, Belém. Scale 1:100.000.

Bennio, L., Brotzu, P., D’Antonio, M., Feraud, G., Gomes, C.B., Marzoli, A., Ruberti, E., 2003. The tholeiitic dyke swarm of the Arraial do Cabo peninsula (SE Brazil): 39Ar/40Ar ages, petrogenesis, and regional significance. J. S. Am. Earth Sci. 16 (2), 163–176. https://doi.org/10.1016/S0895-9811(03)00030-0.

Buchan, K.L., Ernst, R.E., 2013. Diabase Dyke Swarms of Nunavut, Northwest Territories and Yukon, Canada. Geological survey of Canada, p. 24. https://doi.org/10.4095/214883 open file 7464, Available at: https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=293149. (Accessed 7 October 2019).

Buchan, K.L., Ernst, R.E., 2018. A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Res. 58, 39–57. https://doi.org/10.1016/j.gr.2018.02.006.

Buchan, K.L., Ernst, R.E., 2019. Giant circumferential dyke swarms: catalogue and characteristics. In: Srivastava, R.K., Ernst, R.E., Peng, P. (Eds.), Dyke Swarms of the World: A Modern Perspective. Springer Singapore, Singapore, pp. 1–44.

Castro, N.A., 2014. Carta Geológica da Folha Taperuaba SA.24-V-B-II. CPRM, Fortaleza. Programa Geologia do Brasil. Escala 1:100.000.

Caxito, F.A., Hagemann, S., Dias, T.G., Barrote, V., Dantas, E.L., Chaves, A.O., Campos, F. C., 2020. A magmatic barcode for the São Francisco Craton: contextual in-situ SHRIMP U-Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos 374–375. https://doi.org/10.1016/j.lithos.2020.105708.

Cederberg, J., Söderlund, U., Oliveira, E.P., Ernst, R.E., Pisarevsky, S.A., 2016. U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. GFF 138 (1), 219–240. https://doi.org/10.1080/11035897.2015.1093543.

Chaves, A.O., Ernst, R.E., Söderlund, U., Wang, X., Naeraa, T., 2019. The 920–900 Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with Dashigou- Chulan LIP of North China craton: new insights from U-Pb geochronology and geochemistry. Precambrian Res. 329, 124–137. https://doi.org/10.1016/j.precamres.2018.08.023.

Chaves, A.O., Neves, J.M.C., 2005. Radiometric ages, aeromagnetic expression, and general geology of mafic dykes from southeastern Brazil and implications for African–South American correlations. J. S. Am. Earth Sci. 19 (3), 387–397. https://doi.org/10.1016/j.jsames.2005.04.005.

Chaves, A.O., 2011. O enxame de diques de anfibolito do Cráton São Francisco meridional. Rev. Bras. Geociências 41 (3), 509–524. https://doi.org/10.25249/0375-7536.2011413509524.

Chaves, A.O., 2013. Enxames de diques máficos de Minas Gerais – o Estado da Arte. Geonomos 21 (1), 29–33. https://doi.org/10.18285/geonomos.v21i1.253.

Chaves, A.O., Rezende, C.R., 2019. Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): a statherian supercontinent-superplume coupling? Episodes 42 (1), 55–67. https://doi.org/10.18814/epiiugs/2019/019006.

Coelho, R.M., 2016. Petrografia, litoquímica e idades Ar-Ar de diques máficos Mesozo´icos (e Cambrianos?) de Minas Gerais: comparações com basaltos da Província Paraná-Etendeka e com diques da Suíte Fundão. M.Sc. Dissertation — Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte - MG, p. 46.

Coelho, R.M., Chaves, A.O., 2016. Petrografia e litoquímicas de diques máficos Mesozóicos e Cambrianos(?) de Minas gerais: comparações com basaltos da Província Paraná-Etendeka e com diques da Suíte Fundão. Geonomos 24 (1), 29–40. https://doi.org/10.18285/geonomos.v24i1.826.

Cordani, U.G., Bernat, M., Teixera, W., Kinoshita, H., 1974. Idades Radiométricas das Rochas Alcalinas do Sul da Bahia. In: Anais do XXVIII Congresso Brasileiro de Geologia. SBG, Porto Alegre, pp. 253–259.

Corrêa da Costa, P.C., 2003. Petrologia, geoquímica e geocronologia dos diques máficos da região de Crixás-Goías, porção Centro-Oeste do Estado de Goiás. Ph.D. Thesis — Instituto de Geociências, Universidade de São Paulo, São Paulo, p. 151.

Corrêa da Costa, P.C., Girardi, V.A.V., Teixeira, W., 2010. 40Ar/39Ar and Rb/Sr geochronology of the Goiás-Crixás dike swarm, Central Brazil: constraints on the Neoarchean–Paleoproterozoic tectonic boundary in South America, and Nd-Sr signature of the subcontinental mantle. Int. Geol. Rev. 48, 547–560. https://doi.org/10.2747/0020-6814.48.6.547.

Costa, U.A.P., Oliveira, A.C.S, Betiollo, L.M., Bahia, R.B.C., Almeida, M.E., Reis, N.J., 2013. Carta Geológica da Folha Sumauma SB.20-Z-D. Programa Geologia do Brasil. Escala 1:250.000. CPRM, Manaus.

Dalton de Souza, J., Melo, R.C., Kosin, M., 2003. Mapa Geológico do Estado da Bahia - Escala 1:1,000,000. CPRM, Salvador.

Dossin, T.M., Dossin, I.A., Charvet, J., Bonhomme, M.G., 1995. K-Ar chronology of a Mesozoic dike swarm from southern Espinhaço Region (SE Brazil). J. S. Am. Earth Sci. 8 (1), 47–53. https://doi.org/10.1016/0895-9811(94)00040-9.

Ernst, R.E., Bond, D.P.G., Zhang, S.H., Buchan, K.L., Grasby, S.E., Youbi, N., Doucet, L., 2020. Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. In: Ernst, R.E., Dickson, A.J., Beeker, A. (Eds.), Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. Geophysical Monograph, Washington, DC: American Geophysical Union, p. 255.

Ernst, R.E., Bond, D.P.G., Zhang, S.H., 2020. Chapter 12 - Influence of Large Igneous Provinces. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic Time Scale 2020, 1. Elsevier BV., pp. 345–356.

Ernst, R.E., Buchan, K.L., 1997. Giant radiating dyke swarms: their use in identification pre-mesozoic large igneous provinces and mantle plumes. In: Mahoney, J.J., Coffin, M.F. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism, vol. 100. American Geophysical Union, Washington, DC, pp. 237–333. Geophysical Monograph.

Ernst, R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, p. 666.

Ernst, R.E., Bleeker, W., 2010. Large Igneous Provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can. J. Earth Sci. 47 (5), 695–739. https://doi.org/10.1139/E10-025.

Ernst, R.E., Buchan, K.L., 2001. Large mafic magmatic events through time and links to mantle-plume heads. In: Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification through Time. Geological Society of America, United States, pp. 483–575.

Ernst, R.E., Youbi, N., 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014.

Evans, D.A.D., Trindade, R.I.F., Catelani, E.L., D’Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Salminen, J.M., 2016. Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 ma. In: Li, Z.X., Evans, D.A. D., Murphy, J.B. (Eds.), Supercontinent Cycles through Earth History, 424. Geological Society of London, London, pp. 167–190.

Fleck, J.B.F., 2014. Geoquímica, geocronologia e contexto geotectônico do magmatismo máfico associado ao Feixe de Fraturas Colatina, Estado Espírito Santo. Ph.D. Thesis – Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, p. 134.

Florisbal, L.M., Heaman, L.M., Janasi, V.A., Bitencourt, M.F., 2014. Tectonic significance of the Florianópolis dyke swarm, Paraná-Etendeka magmatic province: a reappraisal based on precise U–Pb dating. J. Volcanol. Geoth. Res. 289, 140–150. https://doi.org/10.1016/j.jvolgeores.2014.11.007.

Florisbal, L.M., Janasi, V.A., Bitencourt, M.F., Nardi, L.V.S., Marteleto, N.S., 2018. Geological, geochemical and isotope diversity of 134 ma dykes from the Florianópolis dyke swarm, Paraná magmatic province: geodynamic controls on petrogenesis. J. Volcanol. Geoth. Res. 355, 181–203. https://doi.org/10.1016/j.jvolgeores.2017.08.002.

Fonseca, M.A., 2014. Mapa Geológico do Estado de Minas gerais. CODEMIG, Belo Horizonte programa geologia do brasil. Parceria CPRM e CODEMIG. 1 colored map, Scale 1:1.000.000.

Geraldes, M.C., Teixeira, W., Heilbron, M., 2004. Lithospheric versus asthenospheric source of the SW Amazonian craton A-types granites: the role of the Paleo- and Mesoproterozoic accretionary belts for their coeval continental suites. Episodes 27 (3), 185–189. https://doi.org/10.18814/epiiugs/2004/v27i3/005.

Gorayeb, P.S. de S., 1981. Evolução Geológica da Região de Araguacema - pequizeiro, Goías, Brasil. Centro de Pós-Graduação em Ciências Geofísicas e Geológicas, Universidade Federal do Para ´, Belém, p. 99. M.Sc. Dissertation.

Gorayeb, P.S. de S., Costa E Costa, J.R., Cruz, D.J.N., 2017. A suíte máfica Conceição do Araguaia-Santa Maria das Barreiras (feixe de diques de diabásio e gabro): fronteira Pará-Tocantins. In: Anais do XV Simpósio de Geologia da Amazônia. SBG, Belém, pp. 492–495.

Guimarães, I.P., Almeida, C.N., Santos, E.J., Bittar, S.M., 2011. Carta Geológica da Folha Sap ´e SC.25-Y-C-II. CPRM, Recife.

Guimarães, I.P., Schulze, S.M.B.B., Farias, D.J.S., Yadav, R., Almeida, C.N., Org, 2017. Geologia e Recursos Minerais da Folha Sap ´e - SB.25-Y-C-II: Escala 1:100.000. CPRM, Recife, p. 73.

Halls, H.C., 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci. Can. 9, 145–154. https://journals.lib.unb.ca/index.php/GC/article/view/3309.

Holanda, J.L.R., Marmos, J.L., Maia, M.A.M., 2014. Geodiversidade do Estado de Roraima. CPRM, Manaus, p. 252.

Hollanda, M.H.B.M., Archanjo, C.J., Macedo Filho, A.A., Fossen, H., Ernst, R.E., Castro, D.L., Oliveira, A.L., 2019. The Mesozoic Equatorial Atlantic Magmatic Province (EQUAMP). In: Srivastava, R.K., Ernst, R.E., Peng, P. (Eds.), Dyke Swarms of the World: A Modern Perspective. Springer Singapore, Singapore, pp. 87–110.

Jost, H., Scandolara, J.E., 2010. Características estruturais, petrográficas e geoquímicas de enxames de diques máficos intrusivos em rochas metassedimentares do Greenstone Belt de Crixás. Goiás. Geologia USP, Série Científica 10 (2), 119–134. https://doi.org/10.5327/Z1519-874X2010000300008.

Klein, E.L., Angélica, R.S., Harris, C., Jourdan, F., Babinski, M., 2013. Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north–northeastern Brazil: geochemistry, Sr–Nd–Pb–O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism. Lithos 172–173, 222–242. https://doi.org/10.1016/j.lithos.2013.04.015.

Klein, E.L., Lopes, E.C.S., 2011. Carta Geológica da Folha Centro Novo do Maranhão SA.23.Y.B-I. CPRM, Belém.

Leal, A.B.M., Corrêa-Gomes, L.C., Guimarães, J.T., 2012. Capítulo XII: Diques máficos. In: Barbosa, J.S.F. (Ed.), Geologia da Bahia: Pesquisa e Atualização, 2. CBPM, Salvador, Bahia, pp. 199–232.

Macambira, E.M.B., Ricci, P.S.F, 2011. Aspectos litogeoquímicos do Diabásio Rio Pajéu- enxame de diques no sudeste do Cráton Amazônico. In: Anais do XIII Congresso Brasileiro de Geoquímica. SBG, Gramado, pp. 685–688.

Macambira, E.M.B., Ricci, P.S.F, Anjos, G.C., 2016. Carta Geológica da Folha Repartimento SB.22-X-A. CPRM, Belém.

Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J.H., Chiaradia, M., Youbi, N., Jourdan, F., 2018. The Central Atlantic Magmatic Province (CAMP): a review. In: Tanner, L. (Ed.), The Late Triassic World: Earth in a Time of Transition, vol. 46. Springer International Publishing, Switzerland, pp. 91–125.

Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellieni, G., De Min, A., 1999. Extensive 200-million-year-old continental flood basalts of the central atlantic magmatic province. Science 284 (5414), 616–618. https://doi.org/10.1126/science.284.5414.616.

Matos, R.M.D., 1992. The northeastern Brazilian rift system. Tectonics 11, 766–791. https://doi.org/10.1029/91TC03092.

Matos, R. M. D. 2021. Magmatism and hotspot trails during and after continental break-up in the South Atlantic. Marine and Petroleum Geology, 129, 105077.

Moreira, H.F., 2017. Caracterização Petrológica, Geoquímica e Geocronolíogica de Corpos Intrusivos Máficos da Porção Central da Serra do Espinhaço. M.Sc. Dissertation — Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, MG, p. 150, 2017.

Müller, R.D., Zahirovic, S., Williams, S.E., Cannon, J., Seton, M., Bower, D.J., Russell, S. H., 2019. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38 (6), 1884–1907. https://doi.org/10.1029/2018TC005462.

O’Connor, J.M., Le Roex, A. P, 1992. South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space. Earth Planet Sci. Lett. 113 (3), 343–364. https://doi.org/10.1016/0012-821X(92)90138-L.

Oliveira, D.C., 1992. O papel do enxame de diques Rio Ceará Mirim na evolução tectônica do Nordeste Oriental (Brasil): implicações do Rifte Potiguar. M.Sc. Dissertation — Universidade Federal de Ouro Preto, Ouro Preto, MG, p. 172.

Oliveira, E.P., 2011. The late archaean Uauá mafic dyke swarm, São Francisco craton, Brazil, and implications for paleoproterozoic extrusion tectonics and orogen reconstruction. In: Srivastava, R.K. (Ed.), Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin, Heidelberg, pp. 19–31.

Peate, D.W., 1997. The Paraná-Etendeka province. In: Mahoney, J.J., Coffin, M.F. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism, vol. 100. American Geophysical Union, Washington, DC, pp. 217–245. Geophysical Monograph.

Piaia, P., 2011. Geoquímica de Rochas Máficas da Região de São José do Jacuípe, Segmento Norte do Orógeno Itabuna-Salvador-Curaçá, Cráton de São Francisco, Bahia. M.Sc. Dissertation — Instituto de Geociências, Universidade Estadual de Campinas, Campinas, SP, p. 159.

Pinese, J.P.P., 1997. Geoquímica, geologia isotópica e aspectos petrológicos dos diques máficos Pré-Cambrianos da região de Lavras (MG), Porção sul do Cráton do São Francisco. Ph.D. Thesis — Instituto de Geociências, Universidade de São Paulo, São Paulo, p. 178.

Pinese, J.P.P., Teixeira, W., Piccirillo, E.M., Quémenéur, J.J.G., Bellieni, G., 1995. The Precambrian Lavras mafic dykes, southern São Francisco Craton, Brazil: preliminary geochemical and geochronological results. In: Baer, Heinmann (Eds.), Physics and Chemistry of Dykes. Balkema, Rotterdam, pp. 205–218.

Reis, N.J., Szatmari, J., Wanderley Filho, J.R., York, D., Evensen, N.M., Smith, P.E., 2006. Dois eventos de magmatismo máfico Mesozóico na fronteira Brasil-Guiana: enfoque na Região do rifte Tacutu-North Savannas. In: Anais do XLIII Congresso Brasileiro de Geologia. SBG, Salvador, pp. 459–464.

Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo-Santos, F., Almeida, M.E., D’Agrella- Filho, M.S., 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos 174, 175–195. https://doi.org/10.1016/j.lithos.2012.10.014.

Renne, P.R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prévot, M., Perrin, M., 1992. The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic- Cretaceous boundary. Science 258 (5084), 975–979. https://doi.org/10.1126/science.258.5084.975.

Rizzotto, G.J., Bettencourt, J.S., Teixeira, W., Pacca, I.I.G., D’Agrella Filho, M.S., Vasconcelos, P., Passarelli, C.R., 2002. Geologia e geocronologia da Suíte Metamórfica Colorado e suas encaixantes, SE de Rondônia: implicações para a evolução Mesoproterozóica do SW do Cráton Amazônico. Geol. Usp. Série Científica 2, 41–55. https://doi.org/10.5327/S1519-874X2002000100006.

Rizzotto, G.J., Quadros, M.L.E.S., Bahia, R.B.C., Dall’Igna, L.G., Cordeiro, A.V., 2004a. Folha SC.20-Porto Velho. In: Schobbenhaus, C., et al. (Eds.), Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, Brasília.

Rizzotto, G.J., Quadros, M.L.E.S., Bahia, R.B.C., Dall’Igna, L.G., Cordeiro, A.V., 2004b. Folhas SD.20-Guaporé e SE.20-Lagoa Formosa. In: Schobbenhaus, C., et al. (Eds.), Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, Brasília.

Rosa-Costa, L.C., Chaves, C.L., Klein, E.L., 2014. Geologia e Recursos Minerais da Folha Rio Araguari - NA.22-Y-B: Escala 1:250.000. CPRM, Belém, p. 158.

Ruiz, A.S., 2010. Carta Geológica da Folha Rio Branco SD.21-Y-D-I. CPRM, Goiânia.

Salminen, J., Oliveira, E.P., Piispa, E.J., Smirnov, A.V., Trindade, R.I.F., 2019. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: implications for Archean supercratons. Precambrian Res. 329, 108–123. https://doi.org/10.1016/j.precamres.2018.12.001.

Santos, J.O.S., Hartmann, L.A., Mcnaughton, N.J., Fletcher, I.R., 2002. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U–Pb SHRIMP geochronology. J. S. Am. Earth Sci. 15 (4), 409–429. https://doi.org/10.1016/S0895-9811(02)00061-5.

Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R., Mcnaughton, N.J., 2003. Age, source, and regional stratigraphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U-Pb geochronology. Geol. Soc. Am. Bull. 115 (3), 331–348. https://doi.org/10.1130/0016-7606(2003)1152.0.CO;2.

Schobbenhaus, C., Brito Neves, B.B., 2003. Geologia do Brasil no contexto da Plataforma Sul Americana. In: Bizzi, L.A., et al. (Eds.), Geologia, Tectônica e Recursos Minerais do Brasil. CPRM, Brasília, pp. 5–54.

Sial, A.N., Oliveira, E.P., Choudhuri, A., 1987. Mafic dyke swarms of Brazil. In: Halls, H. C., Fahrig, W.F. (Eds.), Mafic Dyke Swarms, vol. 34. Geological Association of Canada Special Papers, pp. 467–481.

Silva, F.F., Oliveira, D.C., Antonio, P.Y., D’Agrella-Filho, M.S., Lamar ~ao, C.N., 2016. Bimodal magmatism of the Tucumã area, Carajás Province: U-Pb geochronology, classification, and processes. J. S. Am. Earth Sci. 72, 95–114. https://doi.org/10.1016/j.jsames.2016.07.016.

Silveira, E.M., Söderlund, U., Oliveira, E.P., Ernst, R.E., Leal, A.M., 2013. First precise U–Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos 174, 144–156. https://doi.org/10.1016/j.lithos.2012.06.004.

Simões, M.S., Lisboa, T.D.M., Almeida, M.E., Silva, S.R.A.D., Souza, A.G.H., 2019. Geologia e Recursos Minerais das Folhas Igarapé Canoa (SA.20-X-D-VI), Santo Antônio do Abonari (SA.20-X-D-III) e Vila do Pitinga (SA.20-X-B-VI): Projeto Uatumã Abonari. Escala 1:100.000. CPRM, Manaus, p. 38.

Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res.: Solid Earth 105 (B5), 11127–11152. https://doi.org/10.1029/1999JB900398.

Teixeira, L.R., 2008. Projeto Barra-Oliveira Dos Brejinhos (Relatório Temático de Litogeoquímica), 1. Convênio CPRM/CBPM, Salvador, p. 29.

Teixeira, W., Kamo, S.L., Arcanjo, J.B.A., 1997. U-Pb zircon and baddeleyite age and tectonic interpretation of the Itabuna alkaline suite, São Francisco Craton, Brazil. J. S. Am. Earth Sci. 10 (1), 91–98. https://doi.org/10.1016/S0895-9811(97)00008-4.

Teixeira, W., Oliveira, E.P., Peng, P., Dantas, E.L., Hollanda, M.H., 2017. U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences. Precambrian Res. 293, 91–111. https://doi.org/10.1016/j.precamres.2017.02.021.

Teixeira, W., Ernst, R.E., Hamilton, M.A., Lima, G., Ruiz, A.S., Geraldes, M.C., 2015. Widespread ca. 1.4 Ga intraplate magmatism and tectonics in a growing Amazonia. GFF 138 (1), 214–254. https://doi.org/10.1080/11035897.2015.1042033.

Teixeira, W., Geraldes, M.C., D’Agrella-Filho, M.S., Santos, J.O., Barros, M.A.S.A., Ruiz, A.S., Costa, P.C.C., 2011. Mesoproterozoic juvenile mafic–ultramafic magmatism in the SW amazonian craton (Rio Negro-Juruena province): SHRIMP U–Pb geochronology and Nd–Sr constraints of the Figueira Branca Suite. J. S. Am. Earth Sci. 32 (4), 309–323. https://doi.org/10.1016/j.jsames.2011.04.011.

Teixeira, W., Reis, N.J., Bettencourt, J.S., Klein, E.L., Oliveira, D.C., 2019a. Intraplate Proterozoic magmatism in the Amazonian Craton reviewed: geochronology, crustal tectonics, and global barcode matches. In: Srivastava, R.K., Ernst, R.E., Peng, P. (Eds.), Dyke Swarms of the World: A Modern Perspective. Springer Singapore, Singapore, pp. 111–154.

Teixeira, W., Hamilton, M.A., Girardi, V.A., Faleiros, F.M., Ernst, R.E., 2019b. U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio maria and Rio Apa areas): Tectonic implications for events at 1880 Ma, 1110 Ma, 535 Ma and 200 Ma. Precambrian Res. 329, 138–155. https://doi.org/10.1016/j.precamres.2018.02.008.

Tomba, C.L.B., 2012. Análise estrutural dos enxames de diques máficos Eocreta ´ceos do sul-sudeste do Brasil. M.Sc. Dissertation — Instituto de Geociências, Universidade de São Paulo, São Paulo, p. 133.

Trindade, R.I.F., D’Agrella-Filho, M.S., Epof, I., Brito Neves, B.B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci. Lett. 244 (1–2), 361–377. https://doi.org/10.1016/j.epsl.2005.12.039.

Trumbull, R.B., Reid, D.L., De Beer, C., Van Acken, D., Romer, R.L., 2007. Magmatism and continental breakup at the west margin of southern Africa: A geochemical comparison of dolerite dikes from northwestern Namibia and the Western Cape. S. Afr. J. Geol. 110 (2–3), 477–502. https://doi.org/10.2113/gssajg.110.2-3.477.

Trumbull, R.B., Vietor, T., Hahne, K., Wackerle, R., Ledru, P., 2004. Aeromagnetic mapping and reconnaissance geochemistry of the Early Cretaceous Henties Bay- Outjo dike swarm, Etendeka Igneous Province, Namibia. J. Afr. Earth Sci. 40 (1–2), 17–29. https://doi.org/10.1016/j.jafrearsci.2004.07.006.

Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., Müller, R. D., 2019. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10 (3), 989–1013. https://doi.org/10.1016/j.gsf.2018.05.011.

Zhang, S.H., Ernst, R.E., Pei, J.L., Zhao, Y., Zhou, M.F., Hu, G.H., 2018. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales: implications for the Mesoproterozoic time scale and paleoenvironment. Geology 46 (11), 963–966. https://doi.org/10.1130/G45210.1.