May 2008 LIP of the Month
Early Paleozoic Large Igneous Province of the Central Asia Mobile Belt
A.E. Izokh 1,2, G.V. Polyakov2, R.A. Shelepaev1,2, V.V. Vrublevskii3, V.V. Egorova1,2, Rudnev S.N.,1, A.V. Lavrenchuk1,2, E.V. Borodina1, Т. Oyunchimeg1,4
1 Institute of Geology and Mineralogy SB Russian Academy of Science, Novosibirsk, Russia;
2 Novosibirsk State University, Novosibirsk, Russia;
3 Tomsk State University; Tomsk, Russia
4 Institute of Geology and Mineral resources, Ulaanbaator, Mongolia
Contact: A.E. Izokh [izokh@uiggm.nsc.ru]
Most “classic” LIPs are located either on stable cratons or on oceanic crust. However magmatic provinces with many characteristics of LIPs can also be found in fold belts. Such provinces have abundant granitoid batholiths, and associated picritic and layered ultramafic-mafic complexes. One example is the Early Paleozoic LIP of the Central Asia Mobile Belt (CAMB).
Figure 1: Late Cambrian and Early Ordovician layered ultramafic-mafic intrusions, alkaline gabbro, syenite and carbonatite massifs and gabbro-diorite-granites associations in Central Asia (numbers explained in Table 1).
1 – Siberian craton; 2 -5 – terranes: 2 – Proterozoic; 3 – Neoproterozoic –Cambrian; 4 – Cambrian; 5 – Riphean, 6 - Late Cambrian – Silurian; 7 – Late Paleozoic; 8 – Cambro-Ordovician metamorphic complexes HT-LP type; 9 – layered peridotite-gabbro massifs; 10 - alkaline gabbro, syenite and carbonatite; 11 – gabbro-diorite-granites associations; 12 – geological boundaries; 13 – faults
Table 1: Geochronology of the Cambro-Ordovician layered ultramafic-mafic, alkaline and gabbro-diorite-granite associations in the Central Asia Mobile Belt (CAMB)
N/N |
Intrusive |
Association |
Age, Ma |
Method |
References |
---|---|---|---|---|---|
1 |
2 |
3 |
4 |
5 |
6 |
NorthernKuznetsk Alatau |
|||||
1 |
Kaigadagsky |
Peridotite-pyroxenite-gabbronorite |
465±34 |
Sm-Nd (rock, Pl, Px) |
Podlipsky et al. (2001) |
2 |
Verkhnepetropavlovsky |
Alkali gabbro (A-type) |
510±9 |
Sm-Nd (rock, Ap, Px) |
Vrublevsky et al. (2003) |
3 |
Krasnokamensky |
Leucomonzodiorite-leucomonzonite-granosyenite (A-type) |
503.9±7 |
U-Pb |
Rudnev et al. (2004, 2008); Vladimirov et al. (2002) |
4 |
Malodudetsky |
Malodudetsky monzogabbro-monzodiorite+syenite (A-type) |
485.0±3 |
U-Pb |
Rudnev et al. (2004, 2008); Vladimirov et al. (2002) |
5 |
Kaidalovsky |
498.4±1 |
U-Pb |
Rudnev et al. (2004, 2008); Vladimirov et al. (2002) |
|
6 |
Udarninsky |
495.2±5 |
U-Pb |
Rudnev et al. (2004, 2008); Vladimirov et al. (2002) |
|
Gornaya Shoriya |
|||||
7 |
Tebinsky |
Tebinsky gabbro-diorite |
492±9 |
U-Pb |
Izokh et al. (1995); Vladimirov et al. (1999b) |
8 |
Kolosovsky |
485±5 |
U-Pb |
Vladimirov et al. (1999a, 2001) |
|
9 |
Luzhbinsky |
491±9 |
U-Pb |
Izokh et al. (1995); Vladimirov et al. (1999b) |
|
10 |
Sadrinsky |
Sadrinsky gabbro - quartz diorite-granodiorite-granite (I-type)
|
501.8±2,9 |
U-Pb |
Shokal’sky et al. (2000); Babin (2003); Rudnev et al. (2004); Vladimirov et al. (2002) |
11 |
Bazlinsky |
505±8 |
U-Pb |
Babin (2003); Rudnev et al. (2004); Vladimirov et al. (2002) |
|
12 |
Verkhnekondomsky |
Verkhnekondomsky monzodiotite-granodiorite-granite |
492.9±8.4 |
U-Pb |
Babin (2003); Rudnev et al. (2004); Vladimirov et al. (2002) |
Batenevsky range |
|||||
13 |
Samson |
Gabbro-monzodiorite-syenite-granosyenite (A-type) |
502±2 |
Ar-Ar (Am) |
Rudnev S.N.(unpublished data) |
Gorny Altai |
|||||
14 |
Edelweiss |
Pyroxenite-carbonatite |
507±3 |
Ar-Ar (Bt) |
VrublevskyV.V. (unpublished data) |
15 |
Dzheganteregsky |
Dzheganteregsky gabbro-diorite-tonalite-plagiogranite |
509±9.7 |
U-Pb |
Kruk et al. (2005) |
Eastern Tuva |
|||||
16 |
Kaakhemsky batholite |
Zubovsky Gabbro-monzodiorite-granosyenite |
512.4±2.1 |
Ar-Ar (Am) |
Rudnev et al. (2004, 2006) |
17 |
Mazhaliksky peridotite-pyroxenite-gabbronorite |
484.2±2.3 478±1.4 |
Ar-Ar (Аm) U-Pb |
Izokh et al. (2002); Borodina et al. (2004) Sal’nikova et al. (2003) |
|
18 |
Gabbro |
497±1 |
Ar-Ar (Am) |
|
|
19 |
Quartz diorite |
489±1.9 |
Ar-Ar (Am) |
||
South-Eastern Tuva (Sangilen) |
|||||
20 |
Erzinsky |
Gabbro-monzodiorite |
491.6±9.5 490±10 |
U-Pb Rb-Sr (rock) |
Kozakov et al. (1999) Petrova (2001) |
21 |
Chzhargalandsky |
Syenite-granite |
489.9±3.1 |
U-Pb |
Kozakov et al. (2001) |
22 |
Bayankol’sky |
Gabbro-monzodiorite |
496.5±3.6 489±3 476±8 |
U-Pb Ar-Ar (Am) Rb-Sr (rock) |
Kozakov et al. (1999) Izokh et al. (2001) Petrova (2001) |
Eastern Sayan, Southern Pribaikal’e, Eniseisky range |
|||||
23 |
Zapevalikhinsky |
Nizhnederbinsky dunite-pyroxenite-gabbro |
485±10 |
Sm-Nd |
Izokh et al. (1998) |
24 |
Kholtosonsky |
Dzhidinsky gabbro-plagiogranite |
506±1 |
U-Pb |
Gordienko et al. (2004) |
25 |
Modonkul’sky |
504±2 |
U-Pb |
Gordienko et al. (2004) |
|
26 |
Posolnensky |
Quartz diorite-granodiorite-granite |
511±9 |
U-Pb |
Vernikovskaya et al. (2004) |
27 |
Derbinsky |
Quartz diorite-tonalite-plagiogranite |
498±5 |
U-Pb |
Nozhkin et al. (2005) |
Priolkhon’e |
|||||
28 |
Birkhinsky |
Gabbro-monzodiorite |
500±4 |
Ar-Ar (Am) U-Pb |
Udin et al. (2005) Udin et al. (2005) |
29 |
|
Quartz syenite |
495±6 |
U-Pb |
Gladkochub et al. (2008) |
30 |
Ulankharginsky |
Syenite-gabbro |
485±1.5 |
U-Pb |
Vladimirov et al. (2006); Udin et al. (2006); Khromyh (2006) |
Zabaikal’e, Prikhubsugul’e |
|||||
31 |
Shildirkheisky |
|
496±28 |
Sm-Nd |
Izokh at al. (1998); Vladimirov et al. (1999a) |
32 |
Beltesgolsky |
|
480±15 |
U-Pb |
Bognibov et al. (2000) |
Western Mongolia |
|||||
33 |
Khaierkhansky |
Khirgisnursky peridotite-pyroxenite -gabbronorite |
511±12 |
U-Pb |
A.E. Izokh .(unpublished data) |
34 |
Daribi range |
Monzodiorite |
490.4±3.5 |
U-Pb |
Kozakov et al. (2002) |
35 |
Sharatologoisky |
Quartz diorite-tonalite-plagiogranite |
494±10 |
U-Pb |
Rudnev et al. (2007) |
36 |
Khirgisnursky |
Quartz diorite-tonalite-plagiogranite (I-type) |
495±2 |
U-Pb |
Kovalenko et al. (2004) |
37 |
Uregnursky |
Platinum bearing picrite-basalt volcano-plutonic association |
512±6 |
Ar-Ar(Bt) |
Izokh et al. (2007) |
38 |
Beger |
Gabbro-monzodiorite |
480±15 |
K-Ar |
Izokh et al. (1990) |
A large area of mantle plume related magmatism is identified in the CAMB with age from Late Cambrian to Early Ordovician (Yarmoluk et. al., 2002; Izokh et. al., 2005). Geochronological and geochemical data from picritic, gabbroid and alkali basalt associations are used to characterize the plume magmatism of this age. As an example, an Early Cambrian age is determined for the Uregnur picritic volcanic-plutonic complex in Western Mongolia which has economic Au-Pt placers deposits (Fig 1, N 37). Similar Au-Pt placers are found in the Altai-Sayan fold region in several ore districts of Kuznetsk Alatau and Gorniy Shoria. The Fe-Pt mineral association occurs in the Zolotokitatskaya zone of Kuznetsk Alatau. The source rock for the placers is the Ordovician-aged Kaigadatskiy gabbro-pyroxenite-peridotite massif of the Irkutskinsky complex (Fig. 1, N 1). In addition, new Pt-containing placers are identified along the Middle Ters and Big Tuluyul rivers in Maryinsk Taiga. Similar placers occur along the Kaura, Kaurchak, Mrassu, Azart rivers, and the Tyulenevsky groove in Gorny Shoria. The compositional characteristics of platinum indicate that the placers have a magmatic source, the composition of which is similar to the intrusions of Ural-Alaska type. This discovery of isoferroplatinum placer mineralization represents the first find of this type in the Mongolian Altai. This placer discovery along with data on the Altai-Sayan region allows us to define a single belt of mineralization related to ultramafic-mafic magmatism of Ordovician age. The belt extends from the northern part of Kuznetsk Alatau (Kaigadatsky and Middle Tersky massifs) over Gorny Shoria (Au-ferroplatinum placers along the Lebed and Mrassu rivers), and Gorny Altai up to West Mongolia.
Figure 2: Locations of gold-isoferroplatinum placers in the structures of Altai-Sayan fold region and Western Mongolia. Extracted from tectonic map of S.P.Shokalsky. Black is the Kuznetsk Alatay-Altai platinum-bearing belt. Notes: 1 – Kaigadatsky massif, 2 – Middle Ters massif, 3 – Gorny Shoria placers, 4 – Ureg-Nur area.
A Late Cambrian age is determined for carbonatite associations of Altai (507 Ma, N 14) and Kuznetsk Ala Tau (510 Ma, N 2) (Vrublevskii, 2003). An Early Ordovician age was determined for nepheline gabbroids of the Beltesgol massif in Mongolia (west coast of Hubsugul lake) by the U-Pb method (480±15 Ma, N 32). The Luzhbinsky gabbro-syenite intrusion (N 9) in Gornaya Shoria has a 491 Ma age. The occurrence of alkali and carbonatite associations at the same time as picrite and Uralian-Alaskan-type platinum-bearing intrusions is an indication of plume-sourced magmatism (in early Paleozoic time).
The characteristic feature of this magmatic event is the formation of the different ultramafic-mafic associations during a relatively narrow time range, at ca.500 Ma, which preceded massive granite emplacement and was connected with zoning metamorphism (HT/LP type) (Fig. 1, 3). In some terranes low titanium and low alkali high alumina layered ultrabasic-basic intrusions are similar to island arc high alumina layered peridotite-gabbro associations, on the basis of geological and geochemical features (Izokh et al., 1998). Tebinsky (N 7); Kolosovsky (N 8), Zapevaliha (N 23), Mazhaliksky (N 17), and Shildyrhey (N 31) intrusions represent this type of arc-related magmatism.
In another region differentiated dunite-clinopyroxenite-gabbro intrusions are produced by fractionation of picritic or picrobasaltic melts with high potassium alkalinity. Similar intrusions were described and dated in some metamorphic core complexes of Central Asia, for example Dariv Range (Western Mongolia) (N 34), Eastern Sayan Range (N 23), Ol'khon Region (N 28,30) (Khain et. al., 1995; Fedorovsky, 1995). Early Ordovician gabbro-monzodiorite, gabbro-diorite and gabbro-syenite intrusions are also present in the CAMB: Kogtakhsky complex in Kuznetsk Ala Tau (N 13) (Krivenko et. al., 1979), Zubovsky complex in Tuva (N 16) (Kovalev, Rogov, 1981), and gabbro-monzodiorite intrusions in Western Mongolia (35,38) (Kravtsev et. al., 1989; Izokh et. al., 1990). Sometimes picritic dykes are present amongst the gabbro-monzodiorite intrusions. This fact is evidence of synchronous existence of picritic and leucobasitic melts (Krivenko, Fominykh, 1982). Investigation of gabbro xenoliths in camptonite dikes of Western Sangilen and modelling provide evidences that the formation of gabbro-monzodiorite associations takes place during differentiation of picritic or basaltic melt in deep-seated magmatic chambers (Egorova et al., 2006). These data are evidence that the volume of basic magma emplaced during the Cambro-Ordovician was several orders greater than that preserved at the present-day erosion level.
Figure 3: LSchematic representation of the crust – upper mantle structure beneath Sangilen Plateau in Early Palaeozoic according to data from peridotite, pyroxenite and gabbroid xenoliths. A -Cambrian volcanogenic - sedimentary rocks; B - Moren complex; C,D - lower crust; E -Pravotarlashkin intrusion; F - gabbroids of Bayankol’sky intrusion; G - monzodiorite of Bayankol’sky intrusion; H, I, J - intermediate magmatic chambers; K - overlaps. 1-5 - xenoliths: 1 - spinel lherzolite, 2 - spinel-garnet clinopyroxenite, 3-5 - gabbroids: 3 - garnet, 4 - with high -Al clinopyroxenes, 5 - with low - Al clinopyroxenes.
Figure 4: Late Cambrian and Early Ordovician (510-470 Ma) granitoid batholiths in Central Asia (after A.G.Vladimirov et al., 1999)
The widespread occurrence of granitoid batholiths is typical for the Cambrian-Ordovician stage of CAMB (Fig. 4). Also basic dikes are typical for many granitoid intrusions including mingling dikes (Fig. 5) that indicate widespread participation of mantle melts.
Figure 5: Late Basite dikes in Khyargisnur diorite-tonalite-granite intrusion of Western Mongolia (N 36)
The vast scale of granite magmatism, zoned metamorphism (HT/LP type) and various types of mantle-derived magmatism were caused by the arrival of a superplume under Central Asia. Mantle-derived basic magmatism was present at terranes with various thickness and evolutionary histories of the lithosphic mantle: Gorny Altai, Salair, Western Sayan (oceanic lithosphere); Kuznetsk Ala Tau, Gornaja Shoria, Western Mongolia (island arc terrains); Eastern Sayan (island arc and old rifting terrains) and Siberian craton (thick ancient lithosphere mantle). Rocks resulting from crystallization of picritic melts, which are evidence of mantle heating, are found in all of these regions with the exception of the Siberian craton.
References
Babin G.A. (2003) Magmatism of Gornaya Shoria (composition, zoning, geodynamic interpretation) // PhD thesis. Novosibirsk. 20 p.
Bognibov V.I., Izokh A.E., Polyakov G.V., Gibsher A.S., Mekhonoshin A.S. (2000) Composition and geodynamic position of forming of titanbearing ultrabasite-basite intrusions of Central Asian mobile belt // Geology and Geophysics, V.41, №6.P. 1083-1097
Borodina E.V., Egorova V.V., Izokh A.E. (2004) Petrology of Ordovician collision peridotite-gabbro intrusions (Mazhalyk intrusion, South-Eastern Tuva) // Geology and Geophysics. V. 45, № 9. P.1075-1091.
Egorova, V.V., Volkova, N.I., Shelepaev, R.A., Izokh, A.E. (2006) The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. // Mineralogy and Petrology, v. 88, p. 419-441.
Fedorovsky V.S., Bladimirov A.G., Khain E.V., Kargopolov S.A., et al. (1995) Tectonic, methamorphism and magmatism of collisional zone Caledonides of Central Asia // Geotectonics, №3, P. 3-22.
Gladkochub D.P., Donskaya T.V., Wingate M.T.D. et al. (2008) Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rock along the northern margin of the Central Asia Orogen (Olkhon terrane, Lake Baikal, Siberia) // J. Geol. Soc. 2008. V. 165. P. 235-246.
Gordienko I.V., Gorohovsky D.V., Kovach V.P., et al. (2004) Composition, Pb-U age and geodynamic position of gabbroids and granitoids of Dzhida zone of Paleoasian ocean // Матер. совещ. Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk. №. 2. V. 1. P. 95-98.
Izokh A.E., Polyakov G.V., Krivenko A.P. et al. (1990) Gabbroid formations of Western Mongolia. Novosibirsk: Nauka, 385 p.
Izokh А.E., Gibsher A.S., Vladimirov A.G., Tokarev V.N. (1995) Ordovician gabbroids of Gornaya Shoria and their geodynamic interpretation. Abstract. Novokuznetsk, P. 200- 202.
Izokh A.E., Polyakov G.V., Krivenko A.P. et al. (1998) High aluminum layered gabbroids of Central Asian folded belt: geochemistry features, Sm-Nd age and geodynamic position // Geology and Geophysics. V.39. № 11. P. 1565-1577.
Izokh A.E., Kargopolov S.A., Shelepaev R.A. et al. (2001) Cambrian-Ordovician basic magmatism of Altai-Sayan folded belt and connection with HP/LP methamorphism // Astract of conference “Relevant problems of geology and mineralogy of southern Siberia”. Novosibirsk: SB RAN. P. 68-72.
Izokh A.E., Shelepaev R.A., Lavrenchuk A.V. et al. (2005) Variety of Cambrian-Ordovician ultramafic-mafic associations of Central Asian folded belt as reflection of processes of plume – lithospheric mantle interaction // Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk, №. 3. V. 1. P. 106–108.
Izokh A.E., Vishnevsky A.V., Kalugin V.M. et al. (2007) Petrology and geodynamic position of Uregnur picritic association (Western Mongolia) // Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk, №. 5. V. 1. С. 89–91.
Khain E.V., Amelin Y.V., Izokh A.E. (1995) Sm-Nd data about age of ultrabasite-basite complexes in obduction zone of Western Mongolia // Doklady Earth Sciences. V. 341, №6, P. 791-796.
Khromyh S.V. (2006) Petrology of magmatic complexes of deep level of collisional system (on example of early caledonides of Western Pribaikail’e, Olkhon region) // PhD thesis. Novosibirsk. 16 p.
Kozakov I.K., Sal’nikova E.B. Bibikova E.V. et al. (1999) About multistage of Paleozoic granitod magmatism in Tuvino-Mongol massive: results of U-Pb geochronology investigation // Petrology. V. 7. № 6. P. 631-643.
Kozakov I.K., Kotov A.B., Sal’nikova E.B. et al. (2001) Age boundaries of structural evolution of Tuvino-Mongol massive methamorphic complexes // Geotectonic. № 3. P. 22-43.
Kozakov I.K., Sal’nikova E.B. Khain E.V. et al. (2002) Stages and tectonic position of formation of complexes of early Caledonia of Lake zone of Mongolia: results of U-Pb и Sm-Nd isotope investigations // Geotectonic. № 2. P. 80-92.
Kovalenko V.I., Yarmoluk V.V., Sal’nikova E.B., et al. (2004) Khaldzan-Buregte intrusion of alkali and rare-metal magmatic rocks: structure. Geochronology and geodynamic position in caledonides of Western Mongolia // Petrology. V.12. № 5. P. 467-494.
Kovalev P.F., Rogov N.V. (1981) Zubovsky apatite gabbro-monzogranodiorite (granosyenite)- monzodiorite complex of Eastern Tuva. Kyzyl. . P. 120-129.
Kravtsev A.V., Izokh A.E., Tsukernik A.B. (1989) Intrusive magmatism of Lake zone (Mongolia). In Structure complexes of South-Eastern Tuva. Novosibirsk. P.26-44.
Krivenko A.P., Polyakov G.V., Bognibov V.I., et al. (1979) Gabbro-monzodiorite formation of Kuznetsk Alatau. In Basite and ultrabasite complexes of Siberia. Novosibirsk. P. 5-96.
Krivenko A.P., Fominykh V.I. (1982) About participate of picritic melts in forming of gabbro-monzodiorite plutons. In Mineralogy and petrochemistry of intrusive complexes of Siberia. Novosibirsk. P. 34-39.
Kruk N.N., Rudnev S.N., Kuibida M.L. et al. (2005) Geochemistry and age of plagiogranites of Kurai zone (Gornii Altai) // Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk, № 3. V. 2. P. 7-10.
Nozhkin A.D., Bayanova T.B., Turkina O.M., et al. (2005) Early Paleozoic granitoid magamtism and methamorphism in Derbin microcontinent of Eastern Sayan: new isotope data // Doklady Earth Sciences. V. 404. № 2. P. 241-246.
Petrova A.Y. (2001) Rb-Sr isotope system of methamorphic and magmatic rocks of Western Sangilen (South-Eastern Tuva) // PhD thesis. Moscow, 26 p.
Podlipsky M.Y., Krivenko A.P. (2001) New data about geology, composition and formation type Kaigatag intrusive as source of ferroplatinum in placers // Astract of conference “Relevant problems of geology and mineralogy of southern Siberia”. Novosibirsk: SB RAN. P. 126–132
Rudnev S.N., Vladimirov A.G., Ponomarchuk V.A. et al. (2004a) Early Paleozoic granitoid batholits of Altae-Sayan (lateral-age zoning and source) // Doklady Earth Sciences.. V. 396. № 3. P. 369-373.
Rudnev S.N., Vladimirov A.G., Ponomarchuk V.A. et al. (2004b) Age and geodynamic nature of Kaakhem batholite (Eastern Tuva) // Doklady Earth Sciences. V. 399. № 4. С. 506-512.
Rudnev S.N., Vladimirov A.G., Ponomarchuk V.A. et al. (2006) Kaakhem batholite (Eastern Tuva): composition, age, sources and geodynamic position // Lithosphere. № 1. P. 30-42.
Rudnev S.N., Izokh A.E., Kovach V.P. et al. (2007) Stages of formation, geodynamic position and sources of early Paleozoic granitoids of northern part of Lake zone of Western Mongolia // Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk, V. 2. P. 43-45.
Rudnev S.N., Borisov S.M., Babin G.A. et al. (2008) Early Paleozoic batholits of northern part of Kuznetsk Alatau: composition, age, sources // Petrology. № 4. (In press).
Salnikova E.B., Kozakov I.K., Kotov A.B. et al. (2001) Age of Paleozoic granites and metamorphism in the Tuvino-Mjngolian Massiv of Central Asia Mobile Belt: ioss of Precambrian microcontinent // Precambrian Res. V. 110. P. 143-164.
Vladimirov A.G., Gibsher A.S., Izokh A.E., Rudnev S.N. (1999a) Early Paleozoic granitoid batholiths of Central Asia: scale, sources, geodynamic position // Doklady Earth Sciences. V. 369. № 6. P. 795-798.
Vladimirov A.G., Ponomareva A.P., Kargopolov S.A. et al. (1999b) Neoproterozoic age of Tomsk block rocks based on U-Pb, Sm-Nd, Rb-Sr, Ar-Ar dating // Stratigraphy. Geologic correlation. V. 7, № 5. P. 28-42.
`Vladimirov A.G., Kozlov M.S., Shokal’sky S.P. et al. (2001) Age boundary of magmatism of Kuznetsk, Altai and Kalba (based on U-Pb dating) // Geology and Geophysics. V. 42. № 8. P. 1149 – 1170.
Vladimirov A.G., Rudnev S.N., Kruk N.N. et al. (2002) Isotopic dating of ore-bearing magmatic and metamorphic complexes Altai-Sayan fold belt for Geomap – 1000. Novosibirs. 660 p.
Vrublevsky V.V., Gertner I.F., Zhuravlev D.Z., Makarenko N.A. (2003) Sm–Nd age and source of alkali rocks and carbonatite of Kuznetsk Alatau // Doklady Earth Sciences. V. 391. № 3. С. 378-382.
Yudin D.S., Khromyh S.V., Vladimirov A.G. et al. (2005) Isotopic dating of methamorphic and mgmatic rocks of Olkhon region of Western Pribaikail’e, Russia: first data and geodynamic interpretation // Abstract of conference “Geodynamic evolution of lithosphere of Central Asian mobile belt”. Irkutsk. №. 3. V. 2. P. 147-149.
Yudin D.S., Travin A.V., Khromyh S.V., et al. (2006) Model of termochronological evolution of early caledonides of Western Pribaikail’e (Olkhon region) // Abstract of III isotope geochronology conference. Мoscow, V.2. P. 433–438.
Yarmoluk V.V., Kovalenko V.I., Kovach V.P., et al. (2003) Formation geodynamics of caledonides of Central Asian mobile belt // Doklady Earth Sciences. V. 389. № 3. P. 354-359.