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Review
Age of pre-break-up Gondwana magmatism
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Abstract: Extensive outpourings of basalt, and to a lesser extent rhyolite, are closely associated with
continental break-up and plume-lithosphere interactions. The Gondwana supercontinent began to fragment
during Early-Middle Jurassic times and was associated with the eruption of over three million km’® of dominantly
basaltic magma. This intense magmatic episode is recorded in volcanic rocks of the Karoo (Africa), Ferrar
(Antarctica) and Chon Aike (South America). K—Ar and Rb-Sr whole rock geochronology has consistently
failed to produce reliable ages for these volcanic rocks, but in the last four years, the wider application of single
grain “Ar/**Ar and/or U-Pb geochronology has produced more robust and precise dating of the magmatism.
This paper reviews the recent advances in high precision geochronology and provides a full recalibrated
“©Ar/°Ar dataset. Application of these methods across the majority of the volcanic provinces indicates that
approximately 80% of the volcanic rocks were erupted within a short, 3—4 Myr period at c. 182 Ma. This burst
of magmatism occurred in the Karoo province at c. 183 Ma and in the Ferrar provinces at c. 180 Ma, and was
dominated by mafic volcanism. This peak in volcanism is coincident with a second order mass extinction event
at the end of the Pliensbachian when ¢. 5% of marine families were wiped out coinciding with widespread
oceanic anoxia in the early Toarcian. A prolonged period of silicic volcanism occurred along the proto-Pacific
margin, prior to, and during the main phase of break-up. Silicic volcanism was initially coincident with the
plume related Karoo—Ferrar provinces, but continued over c. 40 Myr, associated with lithospheric extension
and subduction along the proto-Pacific continental margin.
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Introduction

Jurassic magmatism in Gondwana formed the most voluminous
outpouring of continental volcanic rocks on Earth during the
Phanerozoic. During the Early-Middle Jurassic, over three
million km*® of dominantly basalt and to a lesser extent
rhyolite, were erupted onto a continent during the initial stages
of break-up (Cox 1992, Pankhurst et al. 2000). The eruption
rate is even more significant when it is considered that
approximately 80% of the volcanic rocks were emplaced
during a short, 34 million year (Myr) period.

Evidence of a magmatic mega-province in pre-break-up
reconstructions of Gondwana (Fig. 1) is recorded in the
volcanic rocks of southern Africa (Marsh et al. 1997), South
America (Pankhurst et al. 1998), south-east Australia (Hergt
et al. 1991), New Zealand (Mortimer ef al. 1995), Tasmania
(Hergt et al. 1989), and Antarctica (Brewer ef al. 1996, Riley
& Leat 1999). TheKaroo igneous province of southern Africa
and its continuation into east Antarctica (Harris et al. 1990) is
the largest of the Gondwana magmatic provinces, consisting
of thick sequences of volcanic and subvolcanic rocks. Tholeiitic
basalts dominate, but in the Lebombo-Mwenezi area, rhyolitic
ignimbrites are the principal rock type. The Dronning Maud
Land magmatic province of east Antarctica consists of mafic
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dykes, sills, and lava flows and alkaline intrusions (Harris
etal. 1990). The Ferrar province of the Transantarctic
Mountains is represented by the mafic layered intrusion of the
Dufek Massif (Ford & Himmelberg 1991, Ferris ef al. 1998),
the Ferrar dolerite sills (Elliot ef al. 1999), and the comagmatic
Kirkpatrick basalts (Kyle 1980). Mafic rocks of ‘Ferrar’
composition also occur in south-east Australia (Hergt ef al.
1991), Tasmania (Hergt et al. 1989), and New Zealand
(Mortimer et al. 1995). The origin of these provinces has
been linked to intracontinental lithospheric extension related
to early stages of continental break-up, and plume-lithosphere
interaction (White & McKenzie 1989, Storey & Kyle 1997).
The major silicic portion of pre-break-up Gondwana
magmatism is exposed in the Patagonian region of South
America. The dominant Patagonia formations are collectively
called the Chon Aike province (Pankhurst ef al. 1998). These
volcanic rocks are predominantly pyroclastic, dominated by
ignimbrites of rhyolitic composition (Pankhurst et al. 1998).
Volcanic rocks exposed along the Antarctic Peninsula are also
dominated by rhyolitic ignimbrites, and are believed to form
an extension of the Chon Aike province (Riley & Leat 1999).

The initiation of magmatism is linked to a major mantle
plume beneath southern Africa at c. 182 Ma, and a second
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Fig. 1. Reconstruction of pre-break-up western Gondwana
showing the major magmatic provinces associated with the
early stages of break-up (c. 182 Ma). Key: MBL = Marie Byrd
Land, DML = Dronning Maud Land. Stippled fill = mafic
rocks of the Karoo-DML province, hashed fill = silicic rocks
of the Chon Aike province, crosses = mafic rocks of the Ferrar
province.

contemporaneous mantle plume beneath the Dufek intrusion
(Storey et al. in press). In South America and the Antarctic
Peninsula, a prolonged episode of silicic volcanism began just
prior to Karoo—Ferrar magmatism and migrated westward to
the continental margin, at about the same time as the initiation
of sea-floor spreading between Antarctica and Africa.

Links between magmatism, continental break-up, mantle
plume activity, and active subduction associated with
Gondwana break-up have been extensively explored (e.g.
Storey & Kyle 1997), but poorly constrained geochronology
has, until recently, prevented authors from completing a
detailed picture. Recently published dates from these magmatic
provinces using “°’Ar/**Ar and/or U-Pb geochronology now
enable a clear temporal picture of pre-break-up Gondwana
magmatism.

Age recalculations and methodology

The application of K-Ar and Rb—Sr whole rock geochronology
has consistently failed to produce reliable ages for the volcanic
rocks of the Karoo, Ferrar, and Chon Aike provinces. However,
the last four years have seen the wider application of °Ar/**Ar
and/or U-Pb geochronology on mineral separates, leading to
more robust and precise dating of the volcanic events. This
paper provides a review of recent ‘high precision’ dating, and
includes recalculation of all referenced “°Ar/*°Ar dates to a
common standard. Given that much of the older K-Ar and
Rb-Sr whole rock data is largely redundant, this will not be
reviewed in detail.

Until recently, the precision from “Ar/**Ar dating had not
reached the point where the error in the standard surpassed the
error from the actual date. Withimproved analytical precision,
many of the older standards that exhibit grain inhomogeneity
are no longer suitable if high precision, comparable data are
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Fig. 2. Map of central Antarctica showing the distribution of the
Ferrar magmatic province (from Fleming et al. 1997).

required (Renne ef al. 1998). Individual laboratories favour
their own laboratory neutron flueice monitors (Table I),
which provide internal consistency. Inter-laboratory
calibrations are often carried out against the McClure Mountain
hornblende monitor (MMhb-1; Alexander et al. 1978).
Problems with this monitor such as grain inhomogeneity have
now become apparent (Baksi ef al. 1996, Renne ef al. 1998)
and increasingly *°Ar/**Ar ages are tied to GA-1550 biotite
(McDougall & Roksandic 1974) either directly or via FCT
sanidine through the intercalibration of Renne et al. (1998).
Given the widespread use of MMhb-1 in “Ar/*°Ar
geochronology in the past and the availability of cross
calibration data, we use this standard (calibrated to GA-1550
at 98.79 Ma) for the calibrations in this paper.

Thereis still disagreement over the age of MMhb-1, varying
from513.5t0523.5Ma (Renne et al. 1994) and the application
of different ages for MMhb-1 can lead to significant differences
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in the calculated °Ar/** Ar age. We have used an age of 523.1
+2.6 Ma(Renneet al. 1998) for MMhb-1 in order to recalculate
ages determined using different laboratory monitors and/or
assigned monitor ages (Table I). Normalization calculations
use a K lambda value of 5.543 x 10! (Steiger & Jiger 1977).
Uncertaintiesin the *K decay constant are + 2%at the 26 level
(Min et al. 2000, Renne 2000), and are not accounted for.
Additional uncertainty due to the recalibration of sample ages
based on the monitor MMhb-1 is also recalculated using
authors reported error (1o). Various authors have included or
excluded different parameters when reporting data
uncertainties. We have not attempted to unravel other author’s
error calculations, mainly because adequate information
permitting this is usually not published, and we have added no
further corrections.

All “Ar/*Ar ages quoted in the text are recalculated to a
MMhb-1 monitor age of 523.1 + 2.6 Ma. Original and
recalculated *°Ar/*°Ar ages appear in Table I, although ages
considered unreliable by their authors areexcluded. A variance
of up to 2% in the decay constant for *K (versus the much
more accurately determined U decay constants) should also be
considered (Min et al. 2000) when comparing “Ar/*Ar data
with U-Pbdata. Caution shouldbe exercised when considering
multigrain U-Pb analyses of zircon. If multigrain analyses are
used, phenomena such as Pb-loss and inheritance may be
averaged in and impossible to recognize (Mundil et al. 1999).
In many cases the resulting bias can be in excess of the quoted
error. Where Rb—Sr ages are mentioned it should be noted that
recent studies have shown the *Rb decay constant to be ¢. 2%
less than the conventional value (Minster ef al. 1982, Begemann
et al. 2000).

Table II. Published U-Pb ages for the Gondwana break-up magmatic provinces.

Geochronology
Ferrar Province

Previous dates for the Ferrar province of East Antarctica
(Fig. 2) covered abroad range (90308 Ma; Elliot ef al. 1985)
although a ‘preferred’ age of 180 + 5 Ma has been advocated
asthebest estimate (Elliot e al. 1985). Recent, high precision
ages for the Ferrar province rocks demonstrate. a short-lived
episode of magmatism. The Kirkpatrick basalts have been
dated using “’Ar/*Ar geochronology (Heimann et al. 1994),
who determined ages between 180.0 + 0.6 to 180.8 + 0.7 Ma
from different stratigraphical levels within the Kirkpatrick
basalts. Similar ages were produced by Elliot ef al. (1999),
who determined a range 0of 178.5+ 0.7 to 181.0+ 0.7 Ma from
several localities along the Transantarctic Mountains. A
preliminary study (abstract) reports a significantly younger
““Ar/*Ar age of 175.1 + 1.0 Ma for a high Fe andesite
(Antonini et al. 1998) which may indicate the presence of later
stage Ferrar volcanism.

Encarnacién et al. (1996) used multigrain U-Pb analyses
on zircon and baddeleyite to determine the age of dolerite sills
from the central Transantarctic Mountains and Victoria Land,
which yielded ages of 183.4 + 1.4 and 183.8 + 1.6 Ma
(Table II), respectively. *Ar/**Ar geochronology by Fleming
etal. (1997) on feldspar and biotite separates from five
individual dolerite sills yielded a range of plateau and total gas
ages from 179.4 £ 0.7 to 181.0 = 0.7 Ma. There is still
discrepancy between the recalibrated “Ar/*°Ar ages and the
U-Pb ages, with the “Ar/*Ar ages typically being a few
million years younger than the U-Pb data. This discrepancy
may be attributed to a depletion of radiogenic “°Ar in the

Paper Province Sample Number Formation/Location U-Pb age Reported 16 error
Encamacion et al. (1996) FP 90-63-9 Ferrar dolerite sill 183.4 1.4
Encamacion et al. (1996) FP 90-76-12 Ferrar dolerite sill 183.8 1.6
Encamacion et al. (1996) KIP 1-247 New Amalfi granophyre 183.7 0.6
Minor & Mukasa (1997) FP 93D-86 Dufek felsic dyke 182.7 0.4
Minor & Mukasa (1997) FP 93D-76 Lexington granophyre (Dufek) 183.9- 0.4
Fanning & Laudon (1999) CAP Mount Peterson Mount Poster Formation 188* 3
Fanning & Laudon (1999) CAP Sweeney Mts Mount Poster Formation 189* 3
Pankhurst et al. (2000) CAP R.4182.10 Brennecke Formation 184.2* 2.1
Pankhurst et al. (2000) CAP R.4197.2 Brennecke Formation 183.9* 1.7
Pankhurst et al. (2000) CAP PAT.70.8 Tobifera Formation 178.4* 1.4
Pankhurst et al. (2000) CAP MV99.40 Tobifera Formation 171.8* 1.2
Pankhurst et al. (2000) CAP PAT.19.2 Chon Aike Formation 168.4* 1.6
Pankhurst et al. (2000) CAP PAT.65.2 Chon Aike Formation 162.7* 1.1
Pankhurst et al. (2000) CAP R.6632.10 Mapple Formation 168.3* 22
Pankhurst et al. (2000) CAP R.6619.4 Mapple Formation 172.6* 1.8
Pankhurst et al. (2000) CAP R.6914.6 Mapple Formation 171.0* 1.1
Pankhurst et al. (2000) CAP R.6908.7 Mapple Formation 170.0* 14
Pankhurst et al. (2000) CAP R.601.9 Mapple Formation 162.2* 1.1
Pankhurst et al. (2000) CAP R.631.1 Mapple Formation 166.9* 1.6
Pankhurst et al. (2000) CAP PAT.62.2 El Quemado Formation 154.5* 1.4
Pankhurst et al. (2000) CAP PAT.34.1 El Quemado Formation 154.1* 1.5

FP = Ferrar province, KIP = Karoo igneous province, CAP = Chon Aike province. *Analyses by U-Pb SHRIMP (Sensitive high resolution ion

microprobe).
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analysed mineral (feldspar-biotite) which would yield
apparently younger ages. Additionally, the smaller
discrepancies may just reflect differences in decay constant
uncertainties (Min et al. 2000).

The age of emplacement of the Dufek Intrusion has also
been determined using multigrain U-Pb techniques on zircon
separates (Minor & Mukasa 1997) which produced
crystallization ages of 182.7 + 0.4 and 183.9 + 0.4 Ma for a
silicic dyke from the Dufek Massif and a capping granophyre
intrusion respectively (Table IT). Minor & Mukasa (1997)
also used “°Ar/*Ar geochronology on hornblende separates
from the granophyre and a different silicic dyke, which
yielded ages of 175.1 + 1.1 to 176.6 = 1.1 Ma (granophyre)
and 179.1+ 1.6 to 181.0 + 1.6 Ma (silicic dyke). The contrast
between °Ar/*Ar and U-Pb ages in the granophyre was
attributed to hydrothermal alteration preventing closure of the
Ar—Ar geochronometer. The “°Ar/**Ar age of the silicic dyke
was interpreted as representing a cooling age, with the U-Pb
age representing a crystallization age. The dyke therefore
yielded a cooling rate of 100°C Ma™'. Brewer et al. (1996)
dated two gabbros from the Dufek massif using the “Ar/**Ar
method and obtained correlation agesof 181.7+3.4and 182.5
+ 3.5 Ma, in surprisingly close agreement with the U-Pb ages
of Encarnacion et al. (1996).

Recent work by Leat efal. (2000) on an ultramafic
lamprophyre dyke from the Pensacola Mountains, interpreted
as forming part of the Ferrar magmatic province, yielded an
“Ar/**Arageof 183.2+2.2 Ma. Thisageisincloseagreement
with the age of the Dufek intrusion and slightly older than (but
within error of) the age of the Ferrar tholeiitic rocks.

The extension of the Ferrar mafic rocks into south-east
Australia (Hergt et al. 1991), Tasmania (Hergt et al. 1989)
and New Zealand (Mortimeret al. 1995) hasbeen substantiated
on largely geochemical grounds. Available age data are
restricted to K—Ar whole rock ages, which provide an age
range of 170-190 Ma (Hergt et al. 1991), supporting
contemporaneity with the rest of the Ferrar province.

Karoo Province (southern Africa—Antarctica)

Previous geochronology on mafic lavas and sills from the
Karoo Province largely relied upon whole-rock K-Ar and
Rb-Sr methods (e.g. Allsopp et al. 1984a, 1984b, Fitch &
Miller 1984). The K—Ar, whole-rock method is now known
to produce widely inaccurate results for volcanic rocks that
have undergone low grade metamorphism (Walker &
McDougall 1982). Replacement minerals (e.g. clays and
zeolites) may significantly postdate igneous crystallization
and/or do not quantitatively retain *°Ar; therefore measured
ages are typically lower than crystallization ages. A further
problem is the incorporation of excess Ar at the time of
crystallization and during post extrusion hydrothermal
crystallization, which can lead to apparently older ages. Fitch
& Miller (1984) dated volcanic rocks from the Karoo using
both K-Ar and “°Ar/** Ar methods, obtaining an age range of
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Fig. 3. Map of southern Africa showing the distribution of the
Karoo igneous province (from Marsh et al. 1997).

¢. 85 Myr, with several peaks of activity at ¢. 160, 170-180
and 190 Ma. Several workers have also applied the Rb—Sr
isochron method to Karoo igneous rocks. Richardson (1984)
reported a whole-rock age of 182 + 2 Ma for the Tandjiesberg
sill (southern Namibia), whereas Allsopp et al. (1984a, 1984b)
determined Rb—Sr whole rock dates of 175+ 5 to 191+ 9 Ma
for mafic and silicic rocks from the Lebombo-Mwenezi
region.

More recent “’Ar/*Ar geochronology has been carried out
on whole rock samples as well as feldspar separates, reducing
some of the problems outlined earlier. Hargravesef al. (1997)
used “’Ar/*Ar laser spot fusion on plagioclase separates taken
from palacomagnetic cores of Karoo dykes. This study
yielded ages of 147 to 202 Ma, though the authors cite
problems with Ar leakage as well as the presence of excess Ar.
Duncanet al. (1997) carried out a detailed “*Ar/*° Arincremental
heating study of thirty-two mafic and silicic volcanic rocks
(plagioclase and whole rock) from South Africa, Namibia and
Antarctica. After removing results that they demonstrated
were inaccurate because of either geological or experimental
effects, the remaining crystallization ages produced a very
tight grouping. A 2 km lava succession in Lesotho yielded a
close grouping of ages, such that the entire section was
adjudged to have been erupted withinc. 0.5Myrat 183+ 1 Ma.
Basaltic and rhyolitic volcanism from the Lebombo-Mwenezi
regionrevealed a slightly broader age range, with tworhyolites
yielding ages of 178.0 £ 0.6 and 179.5 £ 0.7 Ma and several
mafic rocks giving ages between 181.0 = 1.0 and 184.0 +
0.6 Ma. Maficsills, lavas, and dykes were also analysed from
the Karoo of Namibia, Transvaal, and Natal (Fig. 3), all of
which yielded ages indistinguishable from the main period of
Lesotho and Lebombo volcanism, c. 183 £ 1 Ma. It is
important to note a discrepancy in calculated age between
whole rock and plagioclase separate geochronology in the
study of Duncan et al. (1997). Sample KEEE-10 (Table I)
yielded a whole rock “Ar/*°Ar age of 184.5 + 0.7, but a
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significantly younger age (180.3 £0.7 Ma) for the plagioclase
separate. It would be anticipated that the plagioclase separate
would yield a more reliable age, since whole rock ages involve
measuring an average Ar closure age for several phases and
can be more prone to problems such as excess Ar. In general,
whole rock ages and those determined from plagioclase
separates (with average ages of 182.8 Ma and 182.4 Ma,
respectively) are virtually identical in this study.

A further geochronological investigation on the Karoo
Province has been carried out by Encarnacioén et al. (1996)
who selected a granophyre from the New Amalfi sheet (Lesotho
lavas) for U-Pb (zircon and baddeleyite) dating. The sheet is
fed by a dyke, which crosscuts the lowermost lavas of the
Lesotho basalt plateau. They confirmed a weighted mean age
for the Karoo granophyre of 183.7 = 0.6 Ma (Table II), in
close agreement with the “°Ar/*°Ar ages of Duncan et al.
(1997).

The Dronning Maud Land magmatic province of Antarctica
is considered to form an extension of the Karoo Province of
southern Africa (e.g. Brewer et al. 1996, Luttinen ef al. 1998).
““Ar/** Ar geochronology (plagioclase separates) by Brewer
et al. (1996) indicated two episodes of mafic magmatism at
182.0 £ 2.7 Ma (dolerite sill) and a younger episode at 172.0

Marifil
Formation

.Chon Aike
Formation®

Tobifera
Formation

n Chon-Aike Province
Volcanic Rocks

e  Subsurface outcrop

1 1 1 1 | 1 1

+ 3.0 Ma (basalt lava). The older episode of magmatism has
been confirmed by Duncan et al. (1997) who carried out an
“Ar/**Ar study on basalts from Kirwanveggen (Dronning
Maud Land) which yielded plateau ages between 180.4 + 0.6
and 182.6+0.6 Ma, coincident with the main Karoo volcanism
of southern Africa. Preliminary “°Ar/*°Ar geochronology by
Granthamet al. (1998) on alkaline intrusions and mafic dykes
from western Dronning Maud Land indicate a much broader
range in magmatism, fromc. 170 to 200 Ma, but again with an
obvious peak at ¢. 182 Ma.

Silicic volcanism of South America-Antarctic Peninsula
(Chon Aike Province)

The silicic volcanic outcrops of Patagonia and the Antarctic
Peninsula are shown in Fig. 4. Inboth regions the rocks have
been subdivided into localized formations (Pankhurst ef al.
1998, Riley & Leat 1999). The first attempts to date the silicic
rocks relied largely upon the K—Ar whole-rock method, with
highly variable results. A detailed review by Cortés (1981)
revealed a considerable age range in Patagonia (240-125Ma),
withapeak in the interval 165-155Ma. Early geochronology
of silicic volcanic rocks from the northern Antarctic Peninsula
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Fig. 4. Outcrop pattern of silicic volcanic rocks of the Chon Aike province (South America—Antarctic Peninsula), from Pankhurst et al.

(2000).
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(Graham Land) also failed to produce a reliable age. Rex
(1976) determined three K—Ar ages of 190, 160 and 88 Ma,
whereas Pankhurst (1982) produced a single Rb—Sr isochron
of 174 + 2 Ma and Millar et al. (1990) determined a Sm—Nd
isochron of 156 + 6 Ma from a garnet-bearing sill.

The first systematic dating in the Chon Aike province was
by the Rb—Sr whole-rock method (Rapela & Pankhurst 1992)
for the Marifil Formation (Fig. 4), a strongly welded rhyolitic
ignimbrite sequence in north-eastern Patagonia. Rb-Sr
isochrons from four localities yielded a tight range of ages
(182.6 £ 1.5 to 178.4 £ 1.3 Ma), although later Rb-Sr
geochronology from the remainder of the Marifil Formation
(Pankhurst & Rapela 1995) slightly increased this range with
a further isochron of 187.7 = 1.3 Ma. The Chon Aike
Formation, to the south of the Gastre Fault zone, has also been
dated by the Rb—Sr whole-rock method (Pankhurst ef al.
1993), yielding an age of 168.0 + 1.9 Ma. Alric ef al. (1996)
presented “°Ar/*°Ar data for the rhyolitic rocks of Patagonia,
including ages of 178.7+ 0.4 to 187.4 + 0.6 Ma for the Marifil
Formation and an age of 177.6 + 0.7 Ma for the Chon Aike
Formation (N.B. “°Ar/*Ar ages not recalculated as full
analytical data have not been published).

The uncertainty regarding the age of the silicic rocks of
Patagonia and the Antarctic Peninsula led Féraudef al. (1999)
and Pankhurst et al. (2000) to carry out a systematic dating
programme of individual formations. Féraud et al. (1999)
used “Ar/*Ar geochronology (mineral separates and whole
rock) to date samples of andesite to rhyolite composition.
Pankhurst ef al. (2000) used high-precision U-Pb SHRIMP
(sensitive high resolution ion microprobe) dating on zircon
separates (Table II), “°Ar/**Ar geochronology (feldspar
separates) and Rb—Sr geochronology (mineral and whole-
rock) on silicic volcanic units from across the province.

Féraud et al. (1999) reports twenty-seven °Ar/**Ar ages
considered as valid, which included twenty plateau ages and
indicated a period of volcanism from 187.0 + 0.8 to 143.9 +
0.6 Ma, migrating 650 km from east-north-east to west-south-
west. Féraud ef al. (1999) recorded a continuous spread of
ages from c. 187 to 176 Ma and a second group from 160 to
151 Ma. Additionally, they include two ages of 168.2 + 0.6
and 163.7 £ 0.4 Ma from the central part of the province and
two Lower Jurassic ages (146.8 + 0.7 and 143.9 £+ 0.6 Ma)
from the western margins of the province.

Pankhurst ef al. (2000) identified a very similar period of
silicic volcanism, extending from 187.7 + 1.3 to 153.0
1.0 Ma, which they grouped into three separate volcanic
episodes (V,: 188-178 Ma, V,: 172-162 Ma, V,: 157-153
Ma), presenting parallels to the work of Féraud et al. (1999),
but extending the Middle Jurassic age range. The work of
Pankhurstet al. (2000) also includes a detailed geochronology
of the once contiguous Antarctic Peninsula. Thefirst episode,
V, includes the Marifil Formation of Patagonia (Fig. 4) and
rhyolites of the southern Antarctic Peninsula (Brennecke and
Mount Poster formations, Fig. 4). The rhyolites of the Marifil
Formation have an age range of 188-178 Ma, with a peak at

184 + 2 Ma. Although this range is produced from Rb—Sr
geochronology, a very similar age range is provided by
“©Ar/*Ar geochronology (Féraud ef al. 1999). The Brennecke
Formation of southern Antarctic Peninsula has yielded a
U-Pbageof 184.2+2.5Ma (Pankhurst ef al. 2000) indicating
acontemporaneous event to the Marifil Formation. Thisevent
may also extend to the Mount Poster Formation, which has
yielded U-Pb ages of 188 + 3 and 189 + 3 Ma in the main part
of the formation and 167 + 3 Ma at the periphery (Fanning &
Laudon 1999). The identification of c¢. 185 Ma inherited
zircons in younger granitoids of the Antarctic Peninsula
(Pankhurst ef al. 2000) suggests that V, volcanic rocks may be
more widespread at depth than indicated by the present
outcrop.

A second episode, V,, which occurred in the interval
172-162 Ma (weighted mean 169 + 3 Ma; Pankhurst ef al.
2000) is represented in the central part of the province (Chon
Aike Formation), the Andean margin (Tobifera Formation)
and the northern Antarctic Peninsula (Mapple Formation).
Féraud et al. (1999) analysed only one sample (168.2 £ 0.6
Ma) from the Chon Aike Formation, and this fell within the V,
episode of Pankhurst ef al. (2000), although their study did
not include rocks from the Tobifera Formation or the Antarctic
Peninsula.

Acthirdevent, V,, occurred in the interval 157-153 Ma, with
a weighted mean age of 156 + 2 Ma (U-Pb SHRIMP data),
consists of the eastern Andean outcrops of ignimbrite and
associated granitoid intrusions. This event includes the El
Quemado Formation and correlative Ibafiez Formation on the
Chilean side of the Andes. The work of Féraud et al. (1999)
increased the known range of the younger episode, with *°Ar/
¥Arages of 146.8 +0.7 and 143.9 + 0.6 Ma from close to the
Chile—-Argentina border.

Causes of magmatism

The Karoo province of southern Africa and east Antarctica
has been reliably dated at c. 183 + 2 Ma (Encarnacioén et al.
1996, Brewer et al. 1996, Duncan et al. 1997) and produced
over two million km® of dominantly basaltic magma during an
event that lasted less than 4 Myr. Most workers (e.g. Cox
1992) suggest that a mantle plume was responsible for the
Karoo volcanic series, in order to account for the large volume
of mafic magma erupted within a small time frame.

The near coincidence in age between Ferrar and Karoo
magmatism has been taken as evidence of a common heat
source (Duncan et al. 1997, Palfy & Smith 2000); supported
by close geochemical similarities between the Ferrar dolerites
and the low-Ti tholeiites of the Karoo (Elliot & Fleming
2000). However this review indicates that the two provinces
were not exactly synchronous (Fig. 5). Storey & Kyle (1997)
favoured the idea of a megaplume in the South Atlantic, with
smaller plumes feeding off the megaplume, leading to the
production of the Karoo and Ferrar provinces, which may
correspond to the present day Discovery and Bouvet plumes



108 TEAL R. RILEY & KIM B. KNIGHT

y
160 164 168 172 176 180 184 188 192 196 200

Fig. 5. Histograms and cumulative probability curve for ®Ar/*?Ar
ages of basaltic rocks from the Karoo and Ferrar provinces
(Table I). The ages are plotted using Isoplot/Ex (Ludwig
1999). The plot indicates the main peak of Ferrar magmatism
is at 180-181 Ma, which is slightly younger than the peak age
for the Karoo (183-184 Ma).

respectively (Thompson 1998, Storey et al. inpress). Evidence
for a plume source in the Ferrar Province is given support by
the occurrence of rare ultramafic lamprophyre dykes with
OIB-like chemistry in the Pensacola Mountains (Leat et al.
2000). A plume source for the Ferrar is likely to be centred
under the Dufek Massif and dolerite sills and dykes would
have undergone lateral transport over great distances from a
central source (Elliot et al. 1999). This suggestion is supported
by the remarkably homogeneous chemistry of the magmas,
even at great distances (> 2000 km) from the Dufek Massif. A
similar model of lateral injection from a central source situated
within the crust is suggested for the Proterozoic Mackenzie
Dyke Swarm of Canada (Baragar et al. 1996). The Ferrar
tholeiites have been related to a major volcano-tectonic rift
system (Elliot ef al. 1999), which may be linked to tectonic
processes along the parallel, proto-Pacific margin.

The proto-Pacific margin of Gondwana itself was
characterized by extensive silicic-dominated volcanism, prior
to, and during supercontinent break-up. Geochronological
studies have established a long period of silicic magmatism
(c. 40 Myr; Féraud et al. 1999) marked by three principle
magmatic episodes (Pankhurst ef a/. 2000) at c. 188—178 Ma
(V)), ¢ 172-162 Ma (V,) and c. 157-153 Ma (V).
Geochemical arguments (Pankhurst & Rapela 1995, Riley
et al. in press) have been used to conclude that the rhyolites
were generated as a result of lower crustal anatexis in an
extensional environment. Although the province developed
adjacent to the proto-Pacific continental margin, the silicic
rocks of the V, and V, episodes are not interpreted as having
developed indirect response to subduction. Earlier subduction
was, however, crucial in the development of hydrous, readily
fusible mafic underplate at the base of the continental crust.

Partial melting of this mafic underplate led to silicic melt
production and may have been initiated in response to the
peripheral effects of the megaplume event that led to the
eruption of the Karoo and Ferrar provinces. Althoughaccepting
the role of hydrous, highly fusible mafic crust in rhyolite
generation, Pankhurst & Rapela (1995) concluded that partial
melting might occur without substantial heat input into the
crust, but in response to lithospheric thinning.

Conclusions

K-Ar and Rb-Sr whole rock geochronology has consistently
failed to produce reliable ages for volcanic rocks that have
undergone even low grade metamorphism. The last four years
have seen an increase in the application of high precision
(often single crystal) “’Ar/**Ar and /or U-Pb geochronology to
the volcanic provinces associated with the break-up of
Gondwana (Karoo—Ferrar—Chon Aike). However, many of
the published *°Ar/**Ar dates have been calibrated to a monitor
where there is considerable disagreement over the most
‘correct’ age, leading to significant discrepancies in the final
calculated age. This study has recalculated all published ages
to one widely accepted monitor and age (523.1 = 2.6 Ma;
Renne et al. 1998) validating comparison between “Ar/**Ar
ages produced from different laboratories.

Mineral separate “*Ar/**Ar and U-Pb geochronology from
the Karoo and Ferrar provinces show a cluster of ages at 182
+2 Ma (Tables I & I1, Fig. 5), demonstrating a major peak of
volcanism priorto Gondwana fragmentation. Silicicvolcanism
along the proto-Pacific margin of Gondwana was characterized
by a prolonged episode of volcanism (c. 40 Myr), which
began just before Karoo-Ferrar magmatism in the eastern part
of the province, and migrated west toward the continental
margin through the Jurassic.

The rapid emplacement (3—4 Myr) of the basaltic successions
in the Karoo and Ferrar provinces indicates average eruption
rates of 0.5-1 km’a’. These high levels of eruption are
thought to have been responsible for triggering the Early
Jurassic (end Pliensbachian) extinction event (Palfy & Smith
2000), which although not a major event, still led to the
extinction of about 5% of marine animal families and genera.
The end Pliensbachian event is also associated with a major
inflection in the *Sr/*Sr seawater curve. The subsequent rise
of the curve in the Toarcian is thought to reflect increased
humidity and continental weathering triggered by global
warming associated with the increased volcanic emissions
(Palfy & Smith 2000). Evidence for a catastrophic global
event is also recorded in the *C signal (Jenkyns 1988).

Given the prolonged (c. 40 Myr) and presumably sporadic
nature of the silicic volcanism, any associated global impact
is much harder to quantify in terms of related events in the
geological record. The silicic volcanic rocks indicate that
volcanism would havebeen highly explosive, caldera-forming
eruptions, which would lead to vastly increased CO,, sulphur
gases and fine grained particulates in the atmosphere. The
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effects of such explosive eruptions (e.g. Tambora 1815) can
cause significant disturbances to climate, but these typically
only last months—few years.
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