Arctic Frontiers 2012 – Energies of the High North

Printer-friendly versionPrinter-friendly version
Start Date: 
Sunday, January 22, 2012
End Date: 
Friday, January 27, 2012

Location: University of Tromsø, Tromsø, Norway


Includes the following talks:

Sverre Planke (,  M. Trulsvik, S. Polteau, R. Myklebust, J.I. Faleide, F. Corfu and H. Svensen

Abstract: Three Large Igneous Provinces (LIPs) have had a major impact on the basin development in the Barents Sea: (1) the End-Permian Siberian Traps about 250 Ma ago, (2) the early Cretaceous Barents Sea LIP about 120 Ma ago, and (3) the northeast Atlantic Igneous Province about 55 Ma ago. We have studied the formation, age, and impact of these three provinces using a combination of field work (Siberia, Greenland, Svalbard), seismic and potential field data interpretation (Barents Sea, Norwegian Sea, northeast Greenland) and borehole data (Svalbard, Barents Sea, Norwegian Sea). The Siberian Traps volcanism likely caused the mass extinction at the end of the Paleozoic by eruption of a combination of poisonous magmatic and aureole gases. The environment also changed dramatically at this time. In the Barents Sea, the Permian rocks are dominantly evaporites, whereas the overlying Triassic sequences are mainly clastics. A major earliest Triassic delta developed in the southeastern Barents Sea, possibly linked to Siberian Traps uplift and erosion. Early Cretaceous igneous rocks are abundant in the Barents Sea region. The extent of the igneous province is about 700,000 km2, with extrusive and intrusive rocks in the north (e.g., Svalbard, Franz Josef Land) and an extensive sill complex in the Eastern Barents Sea Basin. The igneous event was associated with major uplift along the northern margin, and southward prograding clastic sequences are present both onshore and offshore in the Barents Sea. New geochronology (U/Pb on zircons) data show that the igneous event was short-lived, and occurred in the Barremian or Early Aptian. The Paleogene continental breakup in the northeast Atlantic and Arctic was associated with massive igneous activity. The volcanism triggered global warming, the Paleocene-Eocene Thermal Maximum, in a greenhouse world. The Arctic areas were warm, as documented by subtropical terrestrial and marine fossils. In the Barents Sea, Paleogene igneous rocks are present along the western margin, e.g., in the Vestbakken Volcanic Province. The continental breakup lead to localized uplift along the sheared margin, forming transform margin highs.

Tromsø, Norway